NAVAL POSTGRADUATE SCHOOL @
Monterey, California

AD-A268 523
ERRAMRW.

THESIS

A PROTOCOL VALIDATOR FOR THE SCM AND CFSM
MODELS
by
Zeki Bulent Bulbul
June 1993
Thesis Advisor: G. M. Lundy

Approved for public release; distribution is unlimited.

o 19725
93'8 24 gl mEMNN

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPCART DOCUMENTATION PAGE
a. REPORT SECURITY CLASS Of UNCLASSIFIED 1b. RESTRIC TIVE MARRKINGS

a URITY CLASS ON AUTHOR L
DRSSP A TIOR SO GRATING SCREDUT Approved for public releasc;
distribution is unlimited
PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORCARIZATION REPORT NUMBER(S)
2 NAVE OF FERFORMING ONGANIZATION 85 OFFICE SYMBOr | 75
omputer Clﬁnce Dept. (if apphcable) Naval Postgraduate School
Naval Postgraduate School Cs
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
% DRGANIZATION (it applicable)
8¢. ADDRESS (City, State, and ZIP Code) 10 S
 PROGRAM | PROJECT. . JTTASR . JWORKURIT |
ELEMENTNO. | NO. NO. ACCESSION NO.

11. TITLE (Include Secunity Classification)
A PROTOCOL VALIDATOR FOR THE SCM AND CFSM MODELS

% PERSONAL AUTHOR
uu ekl Bulent

2. 1Pk QL HEPOR [73b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT
Wister's Thesis FroM 09/92 o % June 1993 ” 143
b. SUPPLEMENTARY NOTATION € views expressed 1n this thesis are those of the author and do not retlect the

official policy or position of the Department of Defense or the United States Government.

17, COSATI CODES 18. SUBJECT TERMS (Cominua.on reverse ifnocas.;sary and identify by block qumbor) .
FELD GROUP SUB.GROUP Systems of Communicating Machines, Communicating Finite State

Machines, SCM, CFSM, Protocol Verification.

19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

This thesis introduces and describes a software tool called Mushroom which automates the analysis of network protocols spec-
ified by the Systems of Communicating Machines (SCM) and the Communicating Finite State Machines (CFSM) models. SCM
is a formal model for the specification, verification, and testing of communication protocols. This model was originally devel-
oped to improve the CFSM model which is a simpler and earlier Formal Description Technique (FDT).

The program is developed as two separate programs in the Ada programming language. The first program automates either
the system state analysis (Smart Mushroom), or the full global analysis (Big Mushroom) for a protocol specified by the SCM
model. The second program called Simple Mushroom, automates the global reachability analysis for the CFSM model.

Mushroom greatly facilitates the use of these models for protocol design and analysis. The run time and memory efficiency
of a previous program was improved to allow the analysis of larger and more complex protocols. The program was also extended
to accept up to eight machines (processes) in the protocol specification. The user interface of the program has also been im-
proved.

Mushroom has been used to verify some well known protocols specified by the SCM and CFSM models such as the token
bus protocol, Go Back N and Lap-B data link control protocol.

S DS THIBUTTON/AVALE Ao STRACT 1. A
@uncussmeomnumso Dsms ASRPT. [] DTIC USERS UNCLASSIFIED

508, NAME OF RESPONSIBLE INDIVIDUAL ELEP AroaCoda 22¢é§ﬁ!'cg§inu
or. G. M. Lunay ‘{; ?644) n

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obs?leia UNCLASSIFIED
1

Author:

Approved By:

Approved for public release; distribution is unlimited

A Protocol Validator for the SCM and CFSM Models

by
Zeki Bulent Bulbul
LTJG, Turkish Navy
B.S., Turkish Naval Academy, 1987

Submitted in partial fulfiliment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1993

Zeki Bulent Bulbul

D 77

G. M. Lundy, Thesis Ady:

AASFK—T
-Tak Shing, ‘econd Reader

R

G Chairman,
Department of Computer Science

ii

ABSTRACT

This thesis introduces and describes a software tool called Mushroom which
automates the analysis of network protocols specified by the Systems of Communicating
Machines (SCM) and the Communicating Finite State Machines (CFSM) models. SCM is
a formal model for the specification, verification, and testing of communication protocols.
This model was originally developed to improve the CFSM model which is a simpler and
earlier Formal Dcscripti(‘)n Technique (FDT).

The program is developed as two scparate programs in the Ada programming
language. The first program automates either the system state analysis (Smart Mushroom),
or the full global analysis (Big Mushroom) for a protocol specified by the SCM model. The
second program called Simple Mushroom, automates the global reachability analysis for
the CFSM model.

Mushroom greatly facilitates the use of these models for protocol design and analysis.
The run tirﬁe and memory efficiency of a previous program was improved to allow the
analysis of larger and more complex protocols. The program was also extended to accept
up to eight machines (processes) in the protocol specification. The user interface of the
program has also been improved.

Mushroom has been used to verify some well known protocols specified by the SCM
and CFSM models such as the token bus protocol, Go Back N and Lap-B data link control

protocol.

iii

DTIC QUALITY INSPLCTID 3

DT

Acoession For
NT1> ZRA&I

T4

Uniceaivane 4

O
a

I

A BAMIRES A e « INNEUP

By... ...

| Distritustnnf

| Avniiarility Godes
r— ave S 'mzd/dr

32 Y13 Special

p

B

P

IL

III.

Iv.

TABLE OF CONTENTS

INTRODUCTION i ittt ittt tinieeinanaenens 1
A, MOTIVATION ... i i i iie it iiatineeeannnn 1
B. SCOPEOFTHETHESIS iiiiiiiiiiiiiiiiiiieinann. 2
C. ORGANIZATION. ... i i i i ittt tite e 2
BACKGROUNDOFMODELS.ttt iiieneaneen 4
A. COMMUNICATING FINITE STATEMACHINES 4
1. ModelDefinition. oottt 4
2. An Example of Protocol Specification and Analysis Using CFSM....7
3. Summary. ... i i e 9
B. SYSTEMS OF COMMUNICATINGMACHINES 10
1. ModelDefinition. i i 10
2. Algorithm: System State Analysist 12
3. An Example of Protocol Specification and Analysis Using SCM13
4. SUMMMATY.titieiietneeeenanenenaeotoneeeaanoanensas 16
SIMPLE MUSHROOM: A PROGRAM FOR AUTOMATING
CFSM REACHABILITY ANALYSISo, 17
A. PROGRAMSTRUCTURE......... ... oottt 18
B. INPUT ... i i i i et it e 20
C. REACHABILITY ANALYSIS. ...ttt e 22
D, OUTPUT ... i i i it it it i ittt et 25
SMART AND BIG MUSHROOM: A PROGRAM FOR
AUTOMATING SCM REACHABILITY ANALYSIS. 28
A. PROGRAMSTRUCTURE......... ..ottt 28

iv

3 R) o 1 31

1. FiniteStatt Machines............... it 31

2. VariableDefinitions ittt 33

3. Predicate-ActionTable................c..oiviis i, 34

C. REACHABILITY ANALYSIS. i 39

1. Global Reachability Analysis................. ..., 39

2. Systemstateanalysis it i i 41

D, OUTPUT ... ittt ittt taeeeaateeeanans 42

V. EXAMPLES FOR USING THE MUSHROOM PROGRAM................. 48
A, CFSMMODEL. i ittt iiiaaeaen. 48

1. A Simple Four Machine Protocol.. 48

2. Analysis of Information Transfer Phase of the LAP-B Protocol 52

B. SCMMODELttt ittt iiineiiaaneens 60

1. GOoBack N e e e 60

2. TokenBus......l i i i e 64

VI. CONCLUSIONS AND FURTHER RESEARCH POSSIBILITIES 70
APPENDIX A (LAP-B Protocol Information TransferPhase).................... 74
FSM TextFile. . ..o i i ittt 74
Program Output. e i et ittt i 11
APPENDIX B (Go back N Window Sizeof 10) 80
FSMTextFile..o i e 80
Variable Definitions i i i i i i i i it e 82
Predicate ActionTable i i i 83

L0 1111 111 {011 T: SN PN 88
Program Output(System State Analysis)cciviiiennn... 89
APPENDIX C (Token Bus Protocol)coviiiiiiiiinniieiennnnnns 101

Variable Definitionsttt i i 103
Predicate Action Table ittt 109
Output Format. ittt ittt iataieeeneennanaanns 117
Program Output (System State Analysis)..............coviiiiiiinnn, 118
Program Output (Global Reachability Analysis) 127
REFERENCES ittt ittt ittt ittt iiinneanees 133
INITIALDISTRIBUTIONLISTottt it iiiieeennen 135

vi

I. INTRODUCTION

A. MOTIVATION

In the last decade increasing complexity in computer communication systems have
created a growing demand for formal techniques to specify, design, verify and test
protocols. In order to have a clear understanding of the protocols, both for the protocol
designer and implementor, it is essential to have a formal protocol specification.

There are a large number of formal techniques available for modeling protocols. Most
of these methods can be placed into one of the following general classifications [Ref. 1]:
communicating finite state machines, Petri nets, programming languages and hybrids.
Some models that have found most interest and chosen for standardization are ESTELLE,
LOTOS and SDL. Each of these has its own pros and cons.

Systems of communicating machines (SCM) is also a formally defined model for
specification, analysis and testing of protocols that is defined in [Ref. 2]. This mode} uses
a combination of finite state machines and variables, which may be local to a single
machine or shared by two or more machines, so it can be classified in the models known as
“extended finite-state machines.” The main goal of the SCM model was to improve the
well-known simpler Communicating Finite-State Machines (CFSM) model. The SCM
model has been used to specify and analyze several protocols [Ref. 3], [Ref. 4], [Ref. 5],
[Ref. 6], [Ref. 7). Analysis of protocols specified with this model can be executed using a
method called system state analysis. This analysis is similar to global reachability analysis,
but generates a subset of all reachable states. Sometimes this subset is sufficient to verify

the protocol. In some cases system state analysis is not sufficient for protocol analysis, and

global analysis is needed. However, it is possible to automate the system state analysis and
global analysis based on the SCM model.

Several tools exist for the design and verification of protocols. These tools are very
important for increasing the usefulness of the formal description techniques (FDT).

While there is no “perfect” formal specification technique, there is still room for more
work to understand the advantages of different formal models and develop better tools to

increase the utilization of these models.

B. SCOPE OF THE THESIS

The goal of the thesis is to present a software tool, called mushroom that automates
the reachability analysis of protocols formally specified using CFSM and SCM models.
The name mushroom was chosen as a symbol of something that starts out relatively small
(specification) and gets much bigger quickly (analysis). An earlier version of the program
[Ref. 8] was capable of generating reachability analysis for the protocols consisting of only
two machines. This thesis expands on this earlier work and is capable of analyzing
protocols that has any number of machines from two to eight. In addition, the user interface
for the program has also been improved. The program was tested against results of several
previous works and has confirmed their results. It is also believed that this program will

help to solve some problems concerning the SCM model.

C. ORGANIZATION

The thesis has six chapters. Chapter II reviews the Communicating Finite State
Machines (CFSM) and Systems of Communicating Machines (SCM) models. In Chapter
111, a program called simple mushroom, which automates the global reachability analysis
based on CFSM model, is described. Chapter IV describes a program that automates the

system state analysis (smart mushroom), or the full global analysis (big mushroom) for

a protocol specified formally using the SCM model. In Chapter V, some examples of the
use of the program are given. Chapter VI concludes the thesis with a research review and

suggestions for future work.

II. BACKGROUND OF MODELS

A. COMMUNICATING FINITE STATE MACHINES

Communicating finite state machine (CFSM) model is a simple model and perhaps the
carliest FDT. In this model, each machine ini the network is modeled as a finite automaton
or finite state machine (FSM), with communication channels between pairs of machines
modeled as one-way, infinite length FIFO queues. There is a great deal of literature on this
model [Ref. 9] [Ref. 10] [Ref. 11]. The model is defined for an arbitrary number of
machines; however, for simplicity, a tv'o machine model (shown in Figure 1) will be

presented here.

Machine 1 Machine 2
-

Figure 1: CFSM, 2 machine model representation

1. Model Definition

This section defines the CFSM model [Ref. 12] and provides a simple protocol
specification and analysis to clarify the definition.

A communicating machine M is a finite, directed labeled graph with two types of
edges, sending and receiving. A sending (receiving) edge is labeled ‘-g’ (‘+g’) for some
message g, taken from a finite set G of messages. One of the nodes in M is identified as the
initial node, and each node is reachable from the initial node by some directed path. A node
in M whose outgoing edges are all sending (receiving) edges is a sending (receiving) node;

otherwise the node is a mixed node. If the outgoing edges of each node in M have distinct

labels, then M is deterministic, otherwise M is nondeterministic. The nodes of M are often
referred to as states; these two terms will be used interchangeably throughout this thesis.

Let M and N be two communicating machines having the same set G of messages;
the pair {M.N) is a network. A global state of this network is a four tuple [m,c,,,n,c,], where
m and » are nodes (states) from M and N, and c,, and ¢, are strings from the set G of
messages. Intuitively, the global state [m,c,,,n,c,] means that the machines M and N have
reached states m and n, and the communication channels contain the strings ¢,, and ¢, of
messages, where ¢,, denotes the messages sent from M to N in channel Cy, and ¢, denotes
the messages sent from N to M in channel Cy. In the case of say k number of machines
where & > 2 the global state can be represented as
(m1.912.913.....m2,4271.923,....M3.431,432,..r.... M Qi1 Gk2,---] Where m;s are the nodes of
machines M; and g;; contains the messages sent from M; to M. Subscripts i and j ranges
from /..kand i .

The initial global state of (M,N) is [mg,E,n,E], where mg and ng are the initial
states of M and N, and E is the emnty string.

The network progresses as transitions are taken in either M or N. Each transition
consists of a state change in one of the machines, and either the addition of a message to
the end of one channel (sending transition) or the deletion of a message from the front of
one channel (receiving transition).

A sending transition in M (N) adds a message to the end of channel Cyy (Cp); a
receiving transition in M (N) removes a message from the front of channel C;y (Cp).

Suppose +g is a receiving transition from state i to j in machine M (N). The

transition can be executed if and only if M (N) is in state i and the message g is at the front

of the channel Cy (Cyy). The execution takes zero time. After its execution, machine M (V)
is in state j, and the message g has been removed from the channel Cy, (Cyy).

Similarly, suppose -g is a sending transition from state i to j in M (N). The
transition can be executed if and only if M (N) is in state i. Afterwards, g appears on the end
of the outgoing channel, and the machine has transitioned to state j.

Suppose 5= [m,c;,n,c;] is a global state of (M,N). State s, follows s if there is a
transition (in M or N) which can be executed in s; if there is a sequence of states s;,5;, 7, .
-Sisp such that s; follows s;.5;,; follows s;, and so on, and s, follows s;,,. A state s is
reachable if it is reachable from the initial state.

The communication of a network(M,N) is bounded if, for every reachable state
{m,cy,n.c,) there is a nonnegative integer k such that Ic,,| <k and Ic,| < k, where Icl denotes
the number of messages in channel C.

A reachability graph of a network (M,N) is a directed graph in which the nodes
correspond to the reachable global states of (M,N), and the edges represent the follows
function. That is, th-re is an edge from state s; to state s; if and only if 5; follows s;. The
edges are labeled with the transitions which they represent. This reachability graph can be
generated by starting with the initial state, and adding the states which follow it, connecting
them to it with edges; and repeating for each new state generated.

The next two definitions are of errors that may occur in a communication
protocol, which are detectable by analysis.

A global state [m,c,,,n,c,] is a deadlock state if both m and n are receiving nodes,
and c,,,=c,=E, where E denotes the empty string.

A global state [m,c,,,n,c,} is an unspecified reception state if one of the following

two conditions is true:

(1) m is a receiving state, the message at the head of channel ¢, is g, and none of
m’s outgoing transitions is labeled ‘+g.’

(2) n is a receiving state, the message at the head of channel c,, is g, and none of
n’s outgoing transitions is labeled ‘+g.’

These error conditions can be identified by generating the reachability graph for
a network, and inspecting all states as they are generated.

In the next section, an example protocol is specified and analyzed using the

CFSM model.

2. An Example of Protocol Specification and Analysis Using CFSM
CFSM specification of an imaginary ring-like network consisting of three

communicating machines is shown in Figure 2.

Machine 1 Machine 2
D3, 2 _._ +D3,1 _.
.............. {1 1T 3-..."9-5;
+D2.3 .D0,2 -D1,3 +DO, 1
Machine 3
+D2,2
.D2.1
-D4,1 S
.......... i 3 ..

Figure 2: CFSM specification for the example protocol

It is assumed that the protocol is used at the data link layer, making use of the

services provided by the physical layer.

Edges are labeled such that the characters following the ‘-/+’ shows the messages
and the numbers represent the destination machine. Each machine sends one message to the
next machine and receives a message from the previous machine in clockwise direction
forming a ring. Ignore the dashed edges and nodes for the time being. The initial state of
each machine is 1; thus the initial global state is [1,E,E,1,E,E,1,E,E].

The reachability analysis can be done by a simple procedure. Starting with the
initial global state only one transition is possible, the ‘-D0’ of the machine 1 from state 1.
This leads to global state [2,D0,E,1,E,E,1,E,E]. We can continue the analysis in the same
manner detecting the possible transitions from this new global state. The complete

reachability analysis is given in Figure 3 consisting of a total of six states.

____ _EELEELEE]
l -D0,2

[2,DO.E,1.E,E,1,E, E]
1 +D0,1

[2,E,E,2,E.E,1,E E]
l -D1,3

[2.E.E,1,E,D1,1,E.E]
l +D1,2

[Z’E’E’ 1 ’EYE’21E’E]
-D2,1

[2,E,E,1,E,E,1,D2,E]

| +D2,3

Figure 3: Reachability analysis of the example protocol
In this sample protocol, there are no deadlocks or unspecified receptions. If the

dashed edges and states in Figure 2 are added to the specification, the reachability analysis

shown in Figure 4 would be achieved. In this analysis there is one deadlock condition and
one unspecified reception. In global state [3,E,E,3,E,E,1,E E}, all the channels are empty
and all the nodes are receiving nodes satisfying the deadlock condition. In global state
[2,E,E,1,E,E,3,D4,E], machine 1 and machine 2 are in receiving states but none of the

outgoing transitions are labeled ‘+D4’, satisfying an unspecified reception condition.

———'[I’E’E’19E75’1,E,E] -D3.2 > [3’D3’E’1’E’E’1’E’B]
l -D0,2 ’ l +D3,1
[2,D0.E,1,E.E,1,EE] [3,E.E,3,EE,1EE]
1 +D0,1 Deadlock
[27E’E92’E’Eil ’E)E]
l D1,3
[2,E,E,1,E,D1,1,EE]
1 +D1,2
[2,E,E,1,E,E,2,E E] — [2,E.E,1,E,E,3,D4,E]
1 -D4,1 Unspecified
-D2, Reception

[2,E,E,1,E.E,1,D2E]
+D2,3

Figure 4: Reachability analysis including errors

3. Summary
The CFSM model is simple and easy to understand. However, as the protocols
become more complex, this model becomes difficult to use due to a combinatorial
explosion of states. The analysis might not terminate if the queue length is unbounded. The

number of states in the reachability graph will be unmanageably large for such complex

protocols even if the queue length is bounded. A computer analysis might eventually
terminate, but still the CPU time would be days even months, obviously impractical.
Another disadvantage is that as the protocols become more complex, the
specification of the protocol can be so large, consisting of many states and transitions, that
it makes it very hard to understand if it is the intended specification. Several examples are

given in Chapter V that show the largeness of analysis for some protocols.

B. SYSTEMS OF COMMUNICATING MACHINES

In this section the SCM model is described. First the model definition is given, then
the algorithm for generating the system state analysis is described. Finally the model is used
for specification and analysis of an example protocol to illustrate the important aspects of

the model.

1. Model Definition
A system of communicating machines is an ordered pair C = (M,V), where
M={m;,m,,...m,)
is a finite set of machines, and
V={v},v2,....%}

is a finite set of shared variables, with two designated subsets R; and W; specified
for each machine m;. The subset R; of V is called the set of read access variables for
machine m;, and the subset W, the set of write access variables for m;.

Each machine m; € M is defined by a tuple (S;,5,.L;,N;,t;), where

(1) §; is a finite set of states;

(2) s € §;is a designated state called the initial state of m;;

(3) L; is a finite set of local variables;,

10

(4) N; is a finite set of names, each of which is associated with a unique pair (p,a),
where p is a predicate on the variables L; U R;, and a is an action on the variables of L; U
R; L W;. Specifically, an action is a partial function

aL; XR,->L;XW;

from the values of the local variables and read access variables to the values of
the local variables and write access variables.

(5) t;: S; X N; = §; is a transition function, which is a partial function from the
states and names of m; to the states of m;.

Machines model the entities, which in a protocol system are processes and
channels. The shared variables are the means of communication between the machines.
Intuitively, R; and W; are the subsets of V to which m; has read and write access,
respectively. A machine is allowed to make a transition from one state to another when the
predicate associated with the name for that transition is true. Upon taking the transition, the
action associated with that name is executed. The action changes the values of local and/or
shared variables, thus allowing other predicates to become true.

The sets of local and shared variables specify a name and range for each. In most
cases, the range will be a finite or countable set of values. For proper operation, the initial
values of some or all of the variables should be specified.

A system state tuple is a tuple of all machine states. That is, if (M,V) is a system

of n communicating machines, and s;, for 1< i < n, is the state of machine m;, then the n-
tuple (s;,52,...,5,) is the system state tuple of (M,V). A system state is a system state tuple,

plus the outgoing transitions which are enabled. Thus two system states are equal if every
machine is in the same state, and the same outgoing transitions are enabled.
The global state of a system consists of the system state tuple, plus the values of

all variables, both local and shared. It may be written as a larger tuple, containing the

11

system state tuple with the values of the variables. The initial global state is the initial
system state tuple, with the additional requirement that all variables have their initial
values. The initial system state is the system state such that every machine is in its initial
state, and the outgoing transitions are the ;ame as in the initial global state.

A global state corresponds to a system state if every machine is in the same state,
and the same outgoing transitions are enabled. Clearly, more than one global state may
correspond to the same system state.

Let T (s;,n) = 57 be a transition which is defined on machine m;. Transition t is

enabled if the enabling predicate p, associated with name n, is true. Transition T may be

enabled whenever m; is in state s; and the predicate p is true (enabled). The execution of t

is an atomic action, in which both the state change and the action a associated with n occur
simultaneously.
It is assumed that if a transition is enabled indefinitely, then it will eventually

occur. This is an assumption of fairness, and is needed for the proofs of certain properties.

2. Algorithm: System State Analysis
The process of generating the set of all system states reachable from the initial
state is called system state analysis. This analysis constructs a graph, whose nodes are the
reachable system states, and whose arcs indicate the transitions leading from each system
state to another. This graph may be generated by a mechanical procedure which consists of
the following three steps [Ref. 1]:

1. Set each machine to its initial state, and all variables to their initial values. The
initial set of reachable system states consists of only the initial system state; the
initial graph is a single node representing this state.

2. From the current system state vector and variable values, determine which

transitions are enabled. For each of these transitions, determine the system state
which results from its execution. If this state (with the same enabled transitions)

12

has already been generated, then draw an arc from the current state to it, labelling
the arc with the transition name. Otherwise, add the new system state to the graph,
draw an arc from the current state to it, and label the arc with the name of the
transition.

3. For each new state generated in step 2, repeat step 2. Continue until step 2 has
been repeated for each system state thus generated, and no more new states are
generated.

3. An Example of Protocol Specification and Analysis Using SCM

The specification of an imaginary ring-like network consisting of three machines
similar to the CFSM example in the previous section is given in Figure 5. The specification
consists of the finite state machines, the local and shared variables, and the predicate action
table, shown in Table 1. The local variables are: in_buff1, in_buff2, in_buff3, out_buff1,
out_buff2, and out_buff3 and shown under the corresponding FSMs with their initial
values. The shared variables are: CHANI, CHAN2, and CHAN3 and shown between the
two machines. The initial state of each machine is 0, with the shared variables and local
variables are empty except the local variable out_buffl, which has data in it. E in the
predicate-action table shows the empty string. A character D will be used to represent the
data in the out_buffl local variable. Other notations in the predicate-action table are
intuitive.

Each machine sends one message to the next machine and receives a message
from the previous machine in clockwise direction forming a ring. The global reachability
analysis, shown in Figure 6, has 12 states. The system state analysis, shown in Figure 7, has
only 6 states. The subscripts in Figure 7 are used so that distinct system states having the

same tuple (but not the outgoing transitions) may easily distinguished.

13

M1 M2
CHANI1 o

©

nd_datal rev_datad rev_datal ond_data2

in buffl :E n_bun2 :E
oul_beffl : D oii_beff2 :E
M3
CHAN3 o CHAN2
rev_datal sad_data3
in_buitd :E
oul_buff3: E

Figure 5: FSMs and variables for the example protocol

TABLE 1: PREDICATE-ACTION TABLE FOR THE EXAMPLE PROTOCOL

Transition Enabling Predicate Action
: CHANI1 =-E A T
snd_datal CHANI1 « out_buffl
out_buffl #E out_buffl — E
in_buff1 « CHAN3
rcv_data3 CHAN3 =E out_buffl « in_buffl
CHAN3 « E
CHAN2=E A CHAN2 « out_buff2
snd_data2 out_buff2 2 E out_buff2 «—OE -
in_buff2 « CHANI
rcv_datal CHANI1 2E out_buff2 « in_buff2
CHANI1 « E
CHANS3 « out_buff3
snd_data3 CHAN3=EA -
out_buff3 #E out_buff3 < E
in_buff3 « CHAN2
rcv_data2 CHAN2 2E out_buff3 « in_buff3
CHAN2 <« E

14

{m1,in_buffl,0ut_buffl ,m2,in_buff2,out_buff2,m3,in_buff3,out_buff3,CHAN1,CHAN2,CHAN3]
(0,E.D,0,E,.E,0.E,E,E.,E.E]
‘ snd_datal
(t,E,E,O,E,E,0,E,E,D,E,E]
rcv_datal
(1,E,E,1,D,D,0,E E,E,E,E]
{ snd_dawm2
(1,E,E,0,D,E,0,E,E,E,D,E]
{ rcv_data?
[1,E,E,O0,D,E,1,D,D,E,E,E]}
snd_data3
(t,E,E,O0,D,E,0,D,E,E,E,D]

‘ rcv_data3
(o,p,0,0,D,E,0,D,E,E,E,E] @
snd_datal

{1,D,E,0,D,E,0,D,E,D,E,E]
{)rcv_dalal
[1,D,E,1,D,D,0,D,E,E,E,E]
snd_data2 rcv_data3
(1,D,E,0,D,E,0,D,E.,E,D,E]
rcv_data2
[1,D,E,O,D,E,1,D,D,E,E ,E]
‘ snd_data3
(1,D,E,0,D,E,0,D,E,E,E,D]

Figure 6: Global reachability analysis for the example protocol

Thus, for this protocol we have 6 system states, and 12 global states. For more
complex protocols, the difference between these numbers can be much more. For example,
a sliding window protocol with a window size of 8 the system state analysis was shown to

generate 165 states, while the full global analysis generated 11880 states [Ref. 1].

15

[0,0,0]:——
d_datal

Y
[190'0]0
rev_datal

v
(1.1,0],
&mﬂ_dnlz
[1,0,0],
rev_data2

v
[1.0,1],

snd_data3

[1,0.0);——

Figure 7: System state analysis for the example protocol

4. Summary

The SCM model has desirable properties which overcome some of the
disadvantages of the CFSM model. One of the advantages of the SCM model is that it
greatly redﬁces the number of state explosion through the use of system state analysis. In
some cases, however, the system state analysis is not sufficient for protocol analysis, and
some other method - such as global analysis - must be done. A problem with the system
state analysis is the loops in the state machines which may cause an insufficient analysis.
This problem is illustrated with an example in Chapter V.

Another advantage of SCM model is that it allows communication between
machines in nonsequential manner, unlike a FIFO queue representation in the CFSM
model. The SCM model specification is also easier to understand than the CFSM model for

more complex protocols.

16

III. SIMPLE MUSHROOM: A PROGRAM FOR AUTOMATING CFSM
REACHABILITY ANALYSIS

This Chapter and the next Chapter will describe a program called mushroom, which
was written in the Ada programming language. Mushroom automates the reachability
analysis of protocols specified by the CFSM and the SCM models. The Mushroom program
was first developed as two separate programs. The first program called simple mushroom,
automates the CFSM analysis. The second program automates either system state analysis
(smart mushroom), or the full global analysis (big mushroom) for a protocol specified

formally by the SCM model. The General structure of the Mushroom program is shown in

Figure 8.
CFSM SCM
Specification Specification
l Yy
Simple Big Smart
Mushroom Mushroom Mushroom
Gilobal Global System
Reachabllity Reachability State
Analysis Analysis Analysis

Figure 8: General structure of Mushroom program

17

The Simple Mushroom program, is described in this chapter in four sections: program

structure, inputs to the program, generating the reachability analysis, and outputs of the

program.

A. PROGRAM STRUCTURE

The Simpie Mushroom program consists of Ada subprograms (procedures and
functions), which are separate compilation units and subunits of compilation units. Related
subprograms are also gathered in the same files. The compilation units of the program are
shown in Table 2. Procedurc main is the parent unit. All of the subprograms are the

subunits of procedure main. [Ref. 13]

TABLE 2: SIMPLE MUSHROOM PROGRAM COMPILATION UNITS

Compilation Unit Description File name

main (procedure) This is the parent unit. Contains tmain.a
the main data structures, global
variables, and the driver.

load_machine_array Builds the adjacency lists from tinput.a

(procedure) FSMs.

read_in_file (procedure) Parses the input FSM text file. tinput.a

build_Gstate_graph Generates the reachability graph. | treachability.a

(procedure)

IsEqual (function) Compares two global states for treachability.a
equality.

hash (function) Generates an index number treachability.a

according to the hashing function.

clear_pointers (procedure) | Deallocates the dynamic memory | treachability.a
space for another analysis.

find_tuple (function) Searches the reachability graph tsearch.a
for the equivalent tuples using
cxtemaﬁopcn) hashing.

18

Compilation Unit Description File Name
clear_hash_array Clears the hash array and tsearch.a
(procedure) deallocates the memory.

Print Queue (procedure) Prints the FIFO queues. toutput.a
output_Gstate_transition Outputs the transition name. toutput.a
(procedure)
output_Gstate_node Outputs the machine states, toutput.a
(procedure) unspecified receptions, and
the states with deadlocks.
output_machine_arrays Outputs the FSM description in toutput.a
(procedure) a tabular format.
output_unexecuted_transi- | Qutputs the unexecuted transitions.| toutput.a
tions (procedure)
create_output_file Creates an output file for storing toutput.a
(procedure) the analysis results.
output_analysis (procedure)) Driver for the output subprograms. | toutput.a
system_call (procedure) Interface procedure for Unix tsystem.a
system calls via C.
message_queues Implements the queue operations | tqueues.a
(package) for the FIFO communication
channels.
pointer_queues Implements the queue operations queues_2.a

(generic package)

for the pointer queue that stores the
globals tuples temporarily.

19

The method of splitting the program into separate compilation units has permitted a

hierarchical program development.

B. INPUT

The CFSM specification of a protocol consists of only FSMs of the communicating
machines. In the program, FSMs are represented with a text file. The user enters the
directed graphs as a text file using some reserved words, numbers, and characters
representing the machines, states and the transitions. The list of reserved words and the

syntax for the FSM text description are shown in Figure 9 in Backus-Naur Forin (BNF).

reserved_word ::= start

| number_of_machines

| machine

| state

| trans

| initial_state

| finish
number_of_machines <machine_number>
machine 1| <machine_number>
state <state_number>

+
trans { . }<mcssagc> <next_state> <next_machine>

initial_state <state_number> <state_number> [<state_number>] [<state_number>]
[<state_number>] [<state_number>] [<state_number>] [<state_number>)

<machine_number> ::= 21314151678

<state_number> ::= 012i3!.....15

0
<message> ::= { :lg.tg:: } [{ :lgitgg }] [{ilg:tg‘:tr: }]

<next_state> ::= <state_number>
<next_machine> ::= 1| <machine_number>
<letter> ::= albl...IzIAIBI...IZ

<digit> ::= 0111213141516171819

Figure 9: Syntax for the text description of FSM

20

As can be seen from Figure 9, the maximum number of machines allowed is eight, and
the number of states for each machine can be from 0 to 50. Transition names must be at
most three characters long and may be any combination of letters or digits. These
constraints can be relaxed with slight modifications to the program, if necessary.

The input file for the example protocol in Chapter II for the CFSM model is shown in
Figure 10. For example, “trans -D3 3 2” represents a transition from state 1 to state 3 (first
number) in machine 1 sending (“-” sign) the message “D3” to machine 2. “Initial_state 1 1

1”’ means that the initial states of machine 1, machine 2, and machine 3 are state 1.

start
number_of_machines 3
machine 1
state 1

trans -D332
trans -D022
state 2

trans +D2 13
machine 2
state 1

trans +D3 3 1
trans +D0 2 1
state 2
trans-D113
machine 3
state 1

trans +D2 22
state 2

trans -D4 3 1
trans -D2 11
initial_statc 1 1 1
finish

Figure 10: Text file description of the FSM

First, this file is parsed by read_in_file procedure and tokens are generated. Then,

Load_machine_array procedure constructs an adjacency list which represents the FSMs.

21

The data structure for the adjacency list is shown below:

type cfsm_transition_type is (s.1,u);

type visit_type is (yes,no);

type state_type is range 0..50;

type next_machine_type is range 1..8;

type machine_array_record_type;

type Slink_tupe is access machine_array_record_type;
type machine_array_record_type is

record
transition : cfsm_transition_type := u;
message : message_queue.message_queue_type;

next_Mstate : state_type :=0;
other_machine : next_machine_type := 1;

visited : visit_type = no;
Slink : Slink_type := null;
end record;

type machine_array_type is array(state_type range 0..50) of Slink_type;
type system_array_type is array(next_machine_type range 1..8) of machine_array_type;

The adjacency list for the example protocol is depicted in Figure 12. This adjacency
list is used for constructing the global reachability graph. The adjacency list contains all the
necessary information for generating the global reachability graph.

The user also provides the name of the text input file and a file name for storing the
analysis results. Input file name must end with “.fsm” extension to prevent confusion. The

output file name must be no more than 20 characters long.

C. REACHABILITY ANALYSIS
After reading the input file the program starts generating the global reachability graph.
The program uses the adjacency list and the initial state to construct the global reachability
graph. Starting with the initial state, the new states are added and linked to the graph
dynamically. The algorithm to construct the global reachability graph is given in Figure 13.
During the graph construction, the program also detects the global states with
deadlocks and unspecified receptions. The program also finds the maximum message

queue size and channel overflows. Analysis resuits are stored in the output file in parallel

22

Machine 1

Machine 2

Machine 3

transition [transition s
message @ e
next_Mstate next Mstate
> other_machine 2 other_machme f-
transition r
message
3t next_Msiale _%Z.
other_machme 3
[vigited 1 0ol
[Shink._________|_ o=
transition | r | transition '{56'
message D3 m&ssaﬁe
next ﬁsme 3 next_Mstate 2
other_machine 1 other_machine 1
visited m visited | no)
[Slink | o] [Slink o1t
transition S
essage [D1
next_Mstate 1
other_machine 3
[visited 1 no|
[Slink__________ 1 o
fransition r
message D2
next Mstate 2
other_machimne 2
[_visited no|
_ Slink | o
| transition] _transition s
mssaﬁe 4 [message 1 DZ)
next_Mstate : | next_Mstate 1
other_machine 1 _machine 1
[visited T o] L visited 1 Do

Figure 12: Adjacency list for the example ring protocol in Chapter I

23

with the graph construction. This prevents the traversal of the entire graph one more time

at the end of the program and decreases the run time.

loop (main loop)
forindex1 in 1 .. total_number_of machines loop
place_holder(index]) := machine_array(indexl) (M_state(indexl))
while (place_holder(index) /= null) loop
loop
if (place_holder(index]).transition = s) then
Enqueue the message into the corresponding message queue
search the graph for this new global state tuple
if not found then create a new node and link to the graph
Enqueue this new node to the pointer_queue
else link the transition to found global state tuple
else
if(place_holder(index]).transition) = r and at least one of the message queues for
this machine is not empty then
find this message queue and Dequeue
search the graph for this new global state tuple
if not found then create a new node and link to the graph
Enqueue this new node to the pointer_queue
else link the transition to found global state tuple
end if;
place_holder(index]) := place_holder(index1).Slink
exit
end loop
end loop
end loop
if pointer_queue empty then
exit
else
Dequeue pointer_queue and update M_state for this new node
end if
end loop (main loop)

Figure 13: Algorithm for generating global reachability graph for CFSM

One of the most time consuming procedures is the search algorithm for detecting if a
node was previously created. The previous version of the program [Ref. 8] used a depth

first search | breadth first search in a recursive manner. In this program, the search is made

24

more efficient using a hashing algorithm. The hash function is obtained from the machine
states of the global tuple which has provided an efficient mapping. Therefore, the
complexity of the search algorithm is O(1) when the hash function generates a distinct
index (no collision) and O(n) when the same index is generated, where n is the number of
hash collisions for that state. In many sample runs of the program, the complexity was O(1)
for about 30% of the global states, and 3 nodes had to be traversed on the average for 70%
of the global states. The reachability analysis is limited by the storage capacity of the
computer. The run time is also another factor that must be considered. The largest analysis
carried out by the program thus far has generated about 160,000 states in 12 hours for a six
machine protocol specification. Some alternative methods for improving the efficiency of
the program and analysis size using other search techniques are discussed in Chapter VI.
The structure of a global node is shown in Figure 14. The maximum number of
outgoing transitions is limited to 7, which can be increased if needed. Also, a maximum

channel capacity of 6 messages is introduced to ensure that the analysis eventually stops.

D. OUTPUT

The program stores the analysis results in a file named by the user during the
reachability graph construction. This file contains the specification in a tabular format,
reachability graph and the results of the analysis consisting of the number of states
generated, number of states analyzed, number of deadlocks, number of unspecified
receptions, maximum message queue size and number of channel overflows. Global states
with deadlocks and unspecified receptions are also marked in the reachability graph. The
output file also lists the unexecuted transitions. A menu is displayed at the end of the
analysis. From this menu the user has the option of displaying or printing the results or

continuing the program for another analysis.

25

If the analysis generates more than 2000 states, the program gives an interim summary
of the analysis and asks the user if they would like to continue. If the user wishes to
continue, analysis proceeds in steps of 1000 states until the analysis ends or the user
terminates the analysis (as long as memory is available). For analyzing large protocols, the
number of states between these “stops” can be made larger (for example, increments of

5000 or 10000). The program output for the example protocol in Chapter II is given in

Figure 15.
System_state_number
112]3|4] 5]6] 7|8
Machine_state 4
queue_num I,1
queue_num 1,2
lGTUPLE .
queue_num 8,8
Gtransition
1 ﬁexi machine
new noae
Glink
2
LINK
7

Figure 14: Global state structure with outgoing transitions

26

REACHARILITY ANALYSIS of : ring.fem

SPRCIFICATION
I Machine 1 State Transitions i
| Trem | To | other machine | Transition |
r 1 2 2 | s d0 |
[T T T 2 | =& 43 |
| 2 | 1] 3 | r d2 [

| Machine 2 State Transitions }

| Yrem | To | other machine | Tramsition |
I 1 2 | 1 | = do |
] 1 | 3 | 1 I r 43 |
P 2 11 3 t s A |

| Machine 3 State Transitions]

) Yrom | To | other machine | Transition |
| 1 i 2] 2 | r 4 I
[} 2 {1] 1 [} s d2 |

2 |1 3] 1 1 s dé |

1 {1i,e,®, 1,BE, 1,K2]
-d0 2 [2,d0,8,1,K,K,1,K,K] 2
-43 2 [3,d3,8,1,8,82,1,E,K) 3

2 [2,40,z 1,22,1,8,8)
440 1 [2,%,%,2,%,%,1,K,2) 4
3 [3,43,K,1,8,K,1,K,£)
+43 1 [3,51,3,82,1,8,8) [
41 2,xK,2,82,1,8,1)
-41" 3 { 2,8,%,1,K,41,1,E,8) &
S [3,8,2,3,K,E, 1,8, E]*4seeesasspEADLOCK conditiontteversnssene
¢ [2,8,2,1,8,d1,1,L,K)
+d1 2 [2,K,%,1,KE,E2,E,E)]
71 2,8,%,1,8,8,2,K,8]
-d42 1 (2,%,R,1,E,E,1,d2,8) @
-d¢ 1 [2,%,21,8L,3,44,8] 9
o[2,x,2,1,8,2,1,d2,8)
+442 3 [1,r,X1,KK,1,8, 2] 1
9[2,K,8,1,E,K,3,d4, K] ¢veseceeestngpecified Raceptionttnseseses

SGALY OF REACNABILITY AMALYSIS (AMALYSIS COMPLETED)

Totsl numbex of states generated : 9
Wumber of states analysed : 9
Wumber of deadlocks : 1

Wumber of unspecified receptions : 1
Maxzimum message queuns size : 1
Channel overflow :ROME

UNEXECUTED TRANSITIONS
SEeLOPONRT YO RS

Figure 15: Program output for the example ring protocol

27

IV. SMART AND BIG MUSHROOM: A PROGRAM FOR AUTOMATING SCM
REACHABILITY ANALYSIS

In this Chapter, programs that automate either system state analysis (Smart

mushroom), or the full global analysis (big mushroom) for a protocol specified by SCM

are described. The program is described in four sections: general program structure, inputs

to the program, generating the reachability graph, and outputs of the program.

A. PROGRAM STRUCTURE

Program structure of Smart Mushroom and Big Mushroom are similar to the structure
of Simple Mushroom. The SCM model specification is more complicated than the CFSM
specification, but this complexity in the specification brings some advantages to the
analysis as mentioned in Chapter II. A protocol specified by the SCM model consists of
FSMs, variable definitions, and predicate-action table, rather than just the FSMs as in
CFSM model.

FSMs are entered into the program in the same manner as in Simple Mushroom

program using a text file. The variable definitions and predicate-action table must also be

entered into the program. The user enters these parts by completing Ada packagv.:s1 and
subprograms using the templates provided.

The compilation units for the program are shown in Table 3. The user has access to the
last four packages/subprograms. Once the user completes these subprograms using the

templates and compiles them with the other compilation units, the analysis of the specified

1. Ada packages are one of the four forms of program unit, of which programs can be composed.
The other forms are subprograms, task units, and generic units. Packages allow the specification of
groups of logically related entities. In their simplest form packages specify pools of common object
and type declarations. [Ref. 13]

28

protocol can be performed. Construction of the specification in the form of Ada packages
and subprograms is explained in the next section.

TABLE 3: SMART AND BIG MUSHROOM PROGRAM COMPILATION UNITS

Compilation Unit Description File name
Main (procedure) This is the parent unit. Contains the| smain.a
main data structures, global vari-
ables, and the driver.
load_machine_array Builds the adjacency lists from sinput.a
(procedure) FSMs.
read_in_file (procedure) | Parses the input FSM text file. sinput.a
build_Gstate_graph Generates the global reachability |sg_reachability.a
(procedure) graph.
build_system_state_graph| Generates the system reachability |sg_reachability.
(procedure) graph.
hash (function) Generates an index number sg_reachability.

according to the hashing function.

clear_pointers (procedure)| Deallocates the dynamic memory sg_neachability.d
space for another analysis.

search_for_Gtuple Searches the reachability graph sg_search.a
(function) for the equivalent global tuples

using hashing.
clear_hash_array Clears the hash array and deallocate§ sg_search.a
(procedure) the memory for global reachability

analysis.
search_for_Stuple Searchs the reachability graph sg_search.a
(function) for the equivalent system tuples

using hashing,.

clear_hs_hash_array clears the hash array and deallocates| sg_search.a
(procedure) the memory for system state

analysis.
output_Gstate_node Outputs the machine states, and sg_output.a
(procedure) states with deadlock for global

reachability analysis.

29

Compilation Unit Description File Name

Outputs machine states, and sg_output.a

output_sys_node states with deadlock for system g-oup

(procedure) state analysis.

output_Gstate_transition | Outputs the transition name for sg_output.a

(procedure) global reachability analysis.

output_sys_transition Outputs the transition name for sg_output.a

(procedure) system state analysis.

output_unexecuted_transi-| Outputs the unexecuted transitions. | sg_output.a

tions (procedure)

output_machine_arrays Outputs the FSM description in sg_output.a

(procedure) a tabular format.

output_analysis Driver for the output subprograms. | sg_output.a

(procedure)

system_call (procedure) Interface program for Unix ssystem.a
system calls via C.

queues (generic package) | Implements the queue operations | squeues.a
for the pointer queue that stores
the nodes temporarily.

stacks (generic package) | Implements the stack operations sstacks.a
for storing enabled transitions.

definitions (package) Includes user defined local and named by the
shared variables. user

Analyze_Predicates Determines the enabled transitions | named by the

(procedure) there is one from the predicates. user

for each machine

Action (procedure) Executes the actions for the named by the
enabled transitions. user

output_gtuple (procedure) | Outputs the global state tuples in | named by the
a format defined by the user. user

30

B. INPUT

The inputs to the program consists of three parts, as mentioned earlier. FSMs are
entered using a text file representation as in Simple Mushroom program. Variables and
predicate-action table are entered as Ada packages/subprograms. The user needs to
complete these packages and subprograms by filling in templates provided.

The Ada package template for the variable declarations is called “definitions.” The
predicate-action table is entered using an Ada subprogram template which consists of one
procedure named “Action” and two to eight procedures called
“Analyze_Predicates_Machine*” according to the number of machines in the protocol.
The “*” at the end of the procedure name is replaced by the corresponding machine number
for each machine in the protocol.

After completing the templates described above, the user must compile these units
with the other compilation units listed in Table 3. The program units can be compiled by
entering a “make” command. The “make” command executes a list of shell commands in
the “Makefile” file which contains the commands for compiling the program units
according to their dependencies. After issuing the “make” command, the executable file is
stored in a file named “scm.” The “Makefile” is provided to the user with the mushroom
program.

Each of these program units will be explained in the following subsections. The

example ring protocol described in Chapter I is also used to illustrate how to complete the

templates.

1. Finite State Machines
There are a few differences in the FSM description of Smart and Big Mushroom

programs from Simple Mushroom program. The same reserved words are used to write the

31

FSM text file. These are listed in Figure 9. The syntax changes that must be made to this
form are shown in Figure 16.

In the SCM model, explicit machine numbers to show which machine the
message sent to or received from are not needed for the transition names. Since shared
variables are used for communication between machines, this information is included in the
predicate-action table. The FSM text file for the example ring protocol is shown in Figure
17.

trans <transition name> <next_state>
<transition name> ::= <identifier>
<identifier> ::= {[underline] | letter_or_digit}
<letter_or_digit> ::= <letter > | <digit>

Figure 16: Syntax changes for FSM description of SCM model

start
number_of_machines 3
machine 1

state 0

trans snd_datal 1
state 1

trans rcv_data3 0
machine 2

state 0

trans rcv_datal 1
state 1

trans snd_data2 0
machine 3

state 0

trans rcv_data2 1
state 1

trans snd_data3 0
initial_statc 000
finish

Figure 17: Text file description of the example ring protocol

32

The FSM text file is read by the input procedures and the adjacency list, which is
used during the construction of system and global reachability graphs is generated. The data

structure for the adjacency list is shown in Figure 18.

visit_type is (yes, no);

type machine_array_record_type;

type Slink_type is access machine_array_record_type;
type machine_array_record_type is

record
transition : scm_transition_type := unused;
next_Mstate : natural :=0;
visited : visit_type := no;
Slink : Slink_type := null;
end record;

type machine_array_type is array(integer range 0 .. 50) of Slink_type;
type system_array_type is array (1 .. num_of_machine) of machine_array_type;

Figure 18: Data structure for the adjacency list.

2. Variable Definitions

The user defines the protocol variables in an Ada package named definitions. This
package includes the local variables for each machine and the global variables, which are
considered shared and allow «.\mmunication between machines. A variable can be one of
the Ada defined types such as: integer, array, string, record, character, boolean, etc. These
types and their subtypes are used to define the protocol variables.

The template for the definitions package is given in Figure 19. The shaded areas
show where the variables of the protocol are inserted by the user. Additional type
declarations should be placed before the machine type declarations.

The variable declarations for the example ring protocol is also shown in Figure
20. The local variables of the protocol are: in_buffl, in_buff2, in_buff3, out_buffl,
out_buff2, and out_buff3. The shared variables are: CHAN1, CHAN2 and CHAN3. The

type definition, Dummy_type is placed in each of the local variable declarations of

33

machines in case the protocol has less than eight machines. When declaring the local
variables for each machine, this dummy variable can be deleted from the corresponding

machine. The initial values of the variables are also assigned with the variable declarations.

with TEXT_IO;
use TEXT_IO; Number of machines in the specification
package definitions is (canbe2to 8)

num_of_machines : constant := '

type scm_transition_type is (%
type dummy_type is range 1..255;

type machine1_state_type is Transition names of FSMs
record

dummy : dummy_type;

type machine8_state_type is

Local variables for machines1to 8
record
dummy : dummy_type;

end record;
type global_variable_type is
record
I o Global (shared) variables
end record;
end definitions;

Figure 19: Template for definitions package

3. Predicate-Action Table
The predicate-action table is represented by a number of subprograms as separate
compilation units. These subprograms are named Analyze Predicates and are used to
determine the enabled transitions for each machine. The procedure named Action executes

the actions to be taken for the corresponding enabled predicates. There is one

34

Analyze_Predicates procedure for each machine and one Action procedure for the protocol.

The template for the Analyze_Predicates procedure is shown in Figure 21.

with TEXT_IO;
use TEXT_IO;
package definitions is
num_of_machines ; constant := 3;
type scm_transition_type is (snd_datal,rcv_data3,snd_data2,
rcv_datal,snd_datad,rcv_data2,unused);
type buffer_type is (D,E);

package bulf_enum_io is new enumeration_io (buffer_type);
use buff_enum_io;
type dummy_type is range 1..255;

type machinel_state_type is
record
out_buffl : buffer_type := D;
in_buff1 : buffer_type:=E;
end record;
type machine2_state_type is
record
out_buff2,
in_buff2 :buffer_type:=E;
end record;
type machine3_state_type is
record
out_buff3,
in_buff3 :buffer_type :=E;
end record;
‘type machined_state_type is
record
dummy : dummy_type;
end record;

type machine8_state_type is
record
dummy : dummy_type;
end record;
type global_variable_type is
record
CHAN],
CHAN?2,
CHAN3 : buffer_type := E;
end record;

end definitions;

Figure 20: Completed Definitions package for the example ring protocol

35

separate(main)
procedure Analyze_Predicates_machinel(local : machinel_state_type;
global : global_variable_type;
S : natural;
begi w : in out transition_stack_package.stack) is
gin

case s is Enabling condition
when 0 =>
if () then

push(w,)
end if;

when 1 =>
. Enabled transition

when others =>
null;
end case;
end Analyze_Predicates_machinel;

Figure 21: Template for Analyze Predicates procedures

The user completes the template for each state of the machines. For each machine
state there is one “when” statement. “If”” statements specify the predicates for possible
transitions from the current state. The “Push” statement stores these transitions in the stack.
Since more than one transition can be enabled in some states, a stack is used to store all
possible transitions. The *s” parameter, in the formal parameter list of the procedure, passes
the machine state; and the “w” parameter passes the stack name to the procedure. The file
for the example ring protocol is given in Figure 22.

The template for the Action procedure is shown in Figure 23. The enabled
transitions are passed into this procedure through the “in_transition” formal parameter and
the necessary changes are made to the local and shared variables by the Action procedure.
The “out_system_state” parameter passes the changed protocol variables to the calling
procedure. The completed Action procedure is shown in Figure 24. Text in boldface shows
the user defined parts.

36

scparsie (main)
procedure Analyze_Predicates_Machinel (local : machinel_siate_type; GLOBAL: global_varisble_type;
s : nawral; w : in out transition_stack_peckage.stack) is
begin
casesis
whea 0 =>
if((GLOBAL.CHANI = E) and (LOCAL.out_buffl /= E)) then
Push(w, snd_datal);
end if;
when 1 =>
if (GLOBAL.CHAN3/=E) then
Push(w.rev_data3);
end if;
when others =>
null;
end case;
end Analyze_Predicates_Machinel;
separate (main)
procedure Analyze_Predicates_Machine2(local : machine2_state_type; GLOBAL: global_varisbie_type;
s: nawral; w : in out transition_stack_package.stack) is
begin

case s is
whea 0 =>
if (GLOBAL.CHAN1 /= E) then
Push(w,rcv_datal);
end if;
when 1=>
if ((GLOBAL.CHAN2 = E) and (local.owt_buif2 /= E)) then
Push(w snd_data2);
end if;
when others =>
null;
end case;
end Analyze_Predicates_Machine2;
separate (main)
procedure Analyze_Predicates_Machine3(local : machine3_siste_type: GLOBAL: global_variable_type:
s : natural; w : in out transition_stack_package.stack) is
begin

casesis
when 0=>
if (GLOBAL.CHAN2 /= E) then
push(w.rev_data2);
end if;
when 1 =>
if ((GLOBAL.CHAN?3 = E) and (local.out_buff3 /= E)) then
push(w,sd_data3).
end if;
when others =>
null;
end case;
end Analyze_Predicates_Machine3;
separate (main)
procedure Analyze_Predicates_Machine4(local machine4_siatc_type; GLOBAL: global_variabie_type;
s : natural; w : in out transition_stack_peckage.siack) is
begin
null;
end Analyze_Predicates_Machine4;
separate (main)
procedure Analyze_Predicates_Machine8(local : machine8_state_type;. GLOBAL: giobal_varisble_type;
s : nawnal; w : in out transition_stack_package.stack) is
begin
null;
end Analyze_Predicates_Machine8;

Figure 22: Completed Analyze Predicates procedures for the example ring protocol

37

separate(main)
procedure Action (in_system_state : in out Gsiate_record_type;
in_transition : in out scm_transition_type;
out_system_siate : in out Gstate_record_type) is
begin
case in u-ui.ion . Enabled transition
when

-—>Ad°-hh-

when others =>
put(“Esror in the action procedure™);

end case;

end Action;

Figure 23: Template for Action procedure

separate (main)

procedure Action(in_system_state : in out Gstate_record_type: in_transition : in out scm_transition_type;
out_system_state : in out Gstate_record_type) is

begin

case (in_transition) is
when (snd_datal) => out_system_state. GLOBAL_VARIABLES.CHANI:=
in_system_state.machinel_state.out_buffl;
out_system_state.machinel_state.out_bufll := E;

when (rev_datad) => out_system_state.machinel_staten_buffl :=
in_system_ m.GwBAL VARIABLES.CHAN3;
out_system_state.machinel mu.ut buffl := out_system_state.machinel_state.in_buffl;
out_system_ nu.GLOBAI. VARIABLES.CHAN3 :=E;

when (snd_data2) => out_system_state. GLOBAL_VARIABLES.CHAN2:=
in_system ue.-muuz state.out_bulf2;
out_system_state.machine? suu.ut buff2 := E;

when (rcv_datal) => out_system_siate.machine2_statetn_beff2 :=
in_system _ mu.GIDIIAL VARIABLES.CHANI;
out_system_state.machine2_state.out_buff2 := out_system_state.machine2_siate.in_bufi2;
out_system | state. GLOBAL_ VARIABLBS.CHANI :=E;

when (snd_data3) => out_system_state.GLOBAL_VARIABLES.CHAN3:=
in_system m:.uchlues state.out_bull3;
out_system_state.machine3 m: beit3 := E;

when (rcv_daia2) => out_system_state.machine3_statetn_buffd :-
.~ in_system_state.GLOBAL_VARIABLES.CHANZ;
out_system_state machined_state.out_buffd := out_system_statemachine3_state.in_buff3;
out_system_state. GLOBAL VARIABLES.CHAN? :=E;

when others => put_line("There is an error in the Action procedure™);
end case;
end Action;

Figure 24: Completed Action procedure for the example protocol

38

C. REACHABILITY ANALYSIS

The process of generating the set of all states reachable from the initial state is called
reachability analysis. The program is capable of generating both the global and system
reachability analyses separately for a protocol specified formally by the SCM model.

The user selects either global reachability analysis or system state analysis from a
menu. During the graph construction, the program also detects the states with deadlock
condition. Analysis results are stored in the output file named “rgraph.dat” in parallel with
the graph construction.

Generating the global reachability analysis and system state analysis will be described

in the following subsections.

1. Global Reachability Analysis

The structure of the global node representation used for the program is shown in
Figure 25. This node structure also includes the outgoing transitions. The maximum
number of outgoing transitions is limited to 7, which can be increased if necessary. The
shared variables are stored in the global_variables variable and local variables are stored
separately for each machine in the machine_state* variables.

The initial global state is constructed from both the FSM text file and the initial
values of the variables assigned in the definitions package. All the outgoing transitions are
set to null initially. Starting with the initial global state, new nodes are added and linked to
the graph. The algorithm for generating the global reachability graph is the same as the
algorithm given for the system state analysis in Chapter II except that the “system states”

must be replaced by “global states.” Figure 26 shows a pseudo-code algorithm to construct

the global reachability graph.

39

—SySteT_SIAVE umber |
machine_state 1]2]3} 45| 6] 7]8]

| _global_variables
machinel_state
machmel_state

GTUPLE

machine8 state
Gtransition

visited

LINK

Figure 25: Global state structure with outgoing transitions

The program uses hashing for searching the reachability graph which increases
the run time efficiency of the program. The reachability analysis is limited by the storage
capacity of the computer and by the run time as in Simple Mushroom program. For
example, the program generated 31,460 global states for a sliding window protocol of two
machines defined in [Ref. 1] for a window size of 10. The run time for this example was
about 10 minutes. The number of states and the run time increases greatly as the number of

machines in the protocol increases and the protocol specifications become larger.

loop (main loop)
for indexl in 1 .. total_number_of machines loop
position_holder(indexl) := machine_array(indexl) (M_state(index1))
Determine the enabled ransitions for the machine(index1) and push into transition_stack
While not Empry(transition_stack) loop
while (position_holder(index!) /= null) loop
Traverse the machine arrays for each enabled transition in the stack
if a transition found in the machine arrays create a temporary node resulting from this rransition
call Action procedure to make the necessary changes to the variables of this node
Search the graph for this node
if a node not found then
insert and link the node to the graph
Enqueue the node into the Gpointer_queue
else
link the node to the graph
end if
else
position_holder(index!) := position_holder(index]).Slink
end if
end loop
if not Empty(transition_stack) and a transition not found in the machine arrays
pop the stack
end if;
end loop
end loop
if Gpointer_queue Empty then
exit
else
Dequeue Gpointer_queue
Update M _state for this new node
end if
end loop (main loop)

Figure 26: Algorithm for generating global reachability graph for Big Mushroom

2. System State Analysis
The steps in constructing the system state graph are detailed in Chapter II. The
structure of a system state is shown in Figure 27. Since the variables are not part of the
system state, system state nodes are much smaller than the global state nodes. However, in
order to determine the enabled transitions, variables are still needed for each node in the

graph. The program stores the variables in secondary storage, instead of keeping them as a

4]

part of the node, which decreases the amount of primary memory used and allows the
analysis of larger and more complex protocols.
The pseudo-code algorithm for constructing the system reachability graph is

shown in Figure 28.

system_state_number
STUPLE machine_state 112]31415]6| 7|8
subscript
1 Stransition
Syshink

2

LINK
7

Figure 27: System state structure for Smart Mushroom program

D. OUTPUT

The program stores the results of the analysis in a file named “rgraph.dat.” This file
contains FSMs in a tabular format, system/global reachability graph, and the results of the
analysis consisting of number of states generated, number of states analyzed, and number
of deadlocks. Unexecuted transitions are also listed at the end of the analysis.

Since each protocol specification has different variables, the user also has the
flexibility to output the desired variables. This is done in a similar manner to the predicate-
action table and variable definitions representation explained earlier using an Ada

procedure template. The template for the Qutput_Gruple procedure is shown in Figure 29.

42

The user completes the template with Ada “put” statements for outputting the global states.
Since the system state tuples do not include the variables, there is no need to define an

output format for system reachability graph.

loop (main loop)
forindex1 in 1.. num_of trans loop
if parent_Sstate link(index!) Stransition /= unused then
for index2 in 1 .. total_num_of machines loop
posiotion_holder := machine_array(index2) (M_state(index2))
while position_holder I= null loop
if position_holder .transition = parent_Sstate link(index1).Stransition then

create a temporary sysiem state and store the corresponding variables
determine the enabled outgoing transitions
search the system state graph for this node

if node not found then
insert the node and link to the graph
Enqueue the node into sys_pointer_queue
else
link the node to the graph
end if
exit
else
position_holder := position_holder.Slink
end if
end loop
if an enabled transition found in the machine arrays then
exit
end if
end loop
else
exit
end if
end loop
if sys_pointer_queue empty then
exit
else
Dequeue the sys_pointer_queue
update M_state
end if
end loop (main loop)

Figure 28: Algorithm for generating system state graph for Smart Mushroom program

The completed template for the output_Gtuple procedure is also given in Figure 30.
As in Simple Mushroom program, if the analysis generates more than 2000 states, the
program gives an interim summary and continues in steps as described in Chapter III. At

the end of the program, the user can display/print the results or continue with another

43

system/global state analysis selecting the desired options from the menu. The output of the
program for the example ring protocol is given in Figures 31 and 32.

separate (main)
procedure output_Guple (tuple : in out Gstate_record_type) is
begin
if print_header then
new_line(2);
set_col(5); header format for the variables

print_header := false;

else
put(“[* & integer’image (tuple.machine_state (1)));
put(*, “);
I — ™achine 1 local variables
put(*[* & integer’image (tuple.machine_state (2)));
put(*,*);

pul(u[u & inleger’image (mple.machine_smlc (8)));
put(“ . ll);
- global variables
end if;
end output_Gtuple;

Figure 29: Template for output_Gtuple procedure

separate (main)
procedure output_Guple(tuple : in out Gstate_record_type) is
begin
if print_header then
new_line(2);
set_col(5);
put_line(“ m1(in_bufflout_buffl), m2(in_buff2,0ut_buff2)m3(in_buffl,out_bufl3),
(CHAN1,CHAN2,CHANJ)”);
print_header := false;
else
put(* [" & integer'image(tuple.machine_state(1)));
put(*,*);
buff_enum_io.put(tuple.machinel_state.in_buff1);
put(“, “);
buff_enum_io.put(tuple.machinel_state.out_buff1);
put(* ,” & integer'image(tuple.machine_state(2)));
put(*, “);
buff_enum_io.put(tuple.machine2_state.in_buff2);
put(*, “);
buff_enum_io.put(tuple.machine2_state.out_buff2);
put(“, “);
put(integer'image(tuple.machine_state(3)));
put(*, “),
buff_enum_io.put(tuple.machine3_state.in_buff3);
put(“, “);
buff_enum_io.put(tuple.machine3_state.out_buff3);
put(“, “);
buff_enum_io.put(tuple. GLOBAL_VARIABLES.CHAN1);
put(“, “);
buff_enum_io.put(tuple. GLOBAL_VARIABLES.CHAN2);
put(“, “);
buff_enum_io.put(tuple. GLOBAL _VARIABLES.CHAN3);
put(“ I’);
end if;

end output_Gtuple;

Figure 30: Completed ousput_Gtuple procedure for the example protocol

45

REACRABILITY ANALYSIS of :ring.som
SPECIFICATION

| Machine 1 State Transitions |

from	To	Transition
0	1	snd datal
1	0	rov_datald

| Machine 2 State Transitions |

| Fzrom | To | Transition |
I 0 | 1 | rcv_ datal |
| 1 | 0 | snd_data2 |

| Machine 3 State Transitions |

| Prom | To | Transition |
| 0 | 1 | rev_data2 |
i 1 | 0 | snd_datad |

GLOBAL REACHABILITY GRAPH

mi(in_buffl,ont_buffl),m2(in_buff2,out_buff2),m3(in_buff3,out buff3),(CHAN1,CHAN2,CHANJ)

o (0,2,D,0,%,E, O,RR,EXE,R,R,E]}
i [(1,,E,0,¢,R, O,X,R,D,B,R]
2 (1,®,8,1,p,D, 0,2,8,R,RE,1%)
3 (1,,2,0,D,B, O,R,2,E,D, X))
4 (1,2,2,0,Dp,2, 1,D,D,E,E,2R])
$ (i1,2,2,0,D,R, O,D,2,E,R,D]}
6 (0,D,D,0,D,R, O,D,E,R,E,X1
7 (1,p,2,0,D,R, O,D,R,D,E, K]
s (1,Dp,B,1,D,D, 0,D,2 . ,E,RB,B8)
$ (1,p,R%,0,D,B, O,D,E,B,D,R)
10 (1,p,2,0,D,R, 1,D,D,B,2R,EK]
11 {(1,pD,R2,0,D,R, 0O,D,B,B,ER,D)

SUMMARY OF REACHABILITY AMALYSIS (ANALYSIS COMPLETED)
Wusber of states generated :12

Nusber of atates analyzed :12

MNunber of deadlocks : 0

UNEXRCUTED TRANSITIONS
SRR POURPRERS

Figure 31: Program output for global reachability analysis

46

snd_datal
rov_datal
snd_data2
rov_data2
snd_data3
rov_datal
snd_datal
rov_datal
snd_data2
rov_data2
snd_datal
rov_data3l

OOl LsWNM

10

REACHABILITY AMALYSIS of :ring.scm

SPECIFICATION

| Machine 1 State Transitions |

| From | To | Transition |

I 0 | 1 | snd datal |
0 | rxov datad |

| Machine 2 State Transitions |

| Fzom | To | Transition |
) Y 1 1 | zxov_datal i
| 1 | 0 | snd _data2 |

| Machine 3 State Transitions |

| Prom | %o | Transition |
| 0 } 1 | rev_data2 }
| 2 | 0 | snd _datal i
SYSTEM REACHABILITY GRAPH

0{0, 0,0)0 sanddatal 1

1(1, 0, 0] 0 rov_ datal 2

201 1, 0)0 oenddata2z 3

3([(1, 0, 0] 1 rov dataz ¢

4[1, 0,1])]0 &anddata3 5

$[(1, 0, 0) 2 recv_ datad O

SUMMARY OF REMHABILITY ANALYSIS (ANALYSIS COMPLETED)
Wumber of states generated :6

Number of states analysed :6

Number of deadlocks : 0

UNEXECUTED TRANSITIONS
SRARAPOUR LR R RS

Figure 32: Program output for system state analysis2

2. The number next to “]” sign shows the subscripts that is explained in Chapter II.

47

V. EXAMPLES FOR USING THE MUSHROOM PROGRAM

In this Chapter, the programs Simple Mushroom, Big Mushroom, and Smart
Mushroom are demonstrated with several examples.

The Simple Mushroom program will be used to analyze a simple example four
machine protocol which illustrates some important aspects of the program, such as
detecting unspecified receptions, unexecuted transitions etc. Also, the information transfer
phase of a full duplex LAP-B protocol specified by the CFSM model will be analyzed. This
protocol illustrates a larger and more complex analysis.

The Big Mushroom and Smart Mushroom programs will be used to analyze the GO
BACK N protocol with a window size of 10, and the Token Bus protocol, which illustrates

some important aspects of the system state analysis.

A. CFSM MODEL

1. A -Simple Four Machine Protocol

The specification of the protocol using the CFSM model is shown in Figure 33.
Each of the machines sends/receives a message/acknowledgment from another machine.
Machines 2 and 3 also have another send transition from state 1 to state 3. The FSM
description of the protocol is shown in Figure 34, and analysis results obtained by the
Simple Mushroom program are shown in Figure 35. The analysis generated 36 global states.
There are three unspecified receptions and one unexecuted transition. No deadlocks or
channel overflows are recorded. The maximum channel size is 2. These results are obtained
by simply entering the FSM text file into the program. This analysis would be very

cumbersome to do manually, even for a simple specification like this one.

48

MACHINE 1

+A,m3 -Dm2

MACHINE 3
-A.m}

-D,m4 (+D,m2

MACHINE 2
A&.@

+D,m4 +Dml

MACHINE 4

-D,m2 @DN

Figure 33: Specification for the example four machine protocol

start

number_of_machines 4

machine 1
state 1
trans -D2 2
state 2
trans +A 13
machine 2
state 1
trans-D33
trans+D 21
state 2
trans+D 14
machine 3
state 1
trans-A31
trans +D 2 2
state 2
trans-D 1 4
machine 4
state 1
trans +D 23
state 2
trans -D 12

initial_state 1 111

finish

Figure 34: FSM text file for the example protocol

49

10
11
12
13

REACNARILITY ANALYSIS of : four_machine.fsm

| Machiss 1 Stste Trasasitioas

| rom | To | other machine | Tramsitiom
2
1 | 3 I = a

! Machine 2 fState Trsnsitioms

| Trom | To | other machine | Tramsitioa

I 13 3 | 3 | e D 1
I 2 1 2 | 3 | = D {
1 2 1) | = D |
| Machine 3 State Trsnsitioms |

| From | To | other machine | Transition

I 1 3 | 1 | & A |
| 1 |1 2 1 2 [} r D]
I 2 | 1 1 4 { 8 D |
| Machine 4 State Transitions |
| Prom | To | other machine | Tramsition |
I 1 1 2 | 3 | = D }
2 11 | 2 i s D i

REACHABILITY GRAPK

1,88, 1,EK5B 1,RR,E% 1,BEK.B]

=D 2 [2D0 ,kE 1,ER,E 1,E8E 1,8.K8)
-D 3 [1it88 3,80 ,5 1,BRE 1,KEKBR)
A 1 [1,z,8,8 1,E,B,B, 3,A ,LEE 1,ELR,B]
2,p ,R,K, 1,K8,8% 1,KLKE,E 1,ERE)

=D 3 {2, ,k,k, 3,2,D ,E, 1,EK,ER%E 1,KE,8)
+D 1 {2,5z58,8 2,212, 1,E38, 1,8L,ZE)

-A i1 {20 ,ss 1,858 3,A ,LE 1,EE12]
i,z 3,80 ,R 1,RE,E 1l,ELER)

-D 2 [20D ,Em 3,5, ,E, 1,R,EE, 1,BB,E]
-A 1 (13,88, 38D ,k 3,A ,p5% 1,KLE]
9 2 [1,z58458 3,8LL, 2,85K¢E 1,5KEK)
1,%,2,%, 1,8E,8 3,A ,RR, 1,ERE]

-D 2 (2,0 ,k,E 1,BE,E 3,A ,KE 1,5EB]
-D 3 [1,x5E 38D ., 3,A KK 1,KEE]
2,0 ,e,x 3,50 ,E 1,8, 1,LK,K]

-A 1 [2 ,ssE 3,50 ,E 3,A ,ER, 1,8 EK,K]
+D 2 [2,o ,msE 31485 2,88ECE 1,85358%8]
2,8, 2,88, 1,888 1,RE8]

-A 1 [2,8,8,8 2,6 3,A ,RE 1l,K0R¢EK]
2, .,z 1l,E,B,E 3,A ,BE 1l,BLE,R)

+A 3 [1,p ,%,E 1,ER,E 3,k1%,% 1,RKE)
- 3 [2, ,e,E 3,E,D ,E 3,A ,LRR 1,EB,E]
+ 1 [28,858, 2,2,LE 3,A ,RE, 1,8E,8]
i,8,,E, 3,,D ,BR 3,A ,R,E, 1,EL,1R]

-D 2 {2,0 ,e,BE 330D .2 3A , LK 1,8,R,£]
1,s,8,8, 3,8,k 2,B,R,K, 1,KB,E]

-D 2 (2,p ,s,e 3,228 2,KR,EK 1,E8,E]
-D 4 (1,28 3,B8%6E 1,280 , 1,KL.R)
2,0 .tk 3,50 ,E 3,A KB, 1,888

+A 3 (1,» ,s,kE 3,20 ,LE J,RLE 1,EETE]
2,p ,kEk, 3,%ECE 2K, 1,tE,E8)

=D 4 [2,0 ,m,E 3,828CE 1,22D , 1,%E.R)
2,2,8,2 2,RLE 3,A ,EE 1,EEE]

+A 3 (10"'I‘I zl.l.l.l 3,E,K, 8, lt‘l.I‘l

i,p .z, 1,%E,E 23,22, 1,RCE,EK)

-D 2 2,0 D ,&%,%, 1,BBR,E 3,826 1,888)
-p 3 {1, ,&,%, 3,%D ,E, 3,BB,E 1,%B,R]
4D 1 (1,2, 2,85,%E 3B8CLCC 1,RE,E)]

50

®d VYOV O AN

[
-]

1
12
13
10
12
10

11
14

15
16
17
18
17

14

13

16

17
18

19

21
22

24
235

27

n
32

34
s
36

— o

1,B,8,8
2
1
3
1 B
2
2 B
1
3
1,8,8,8
2
2 -]

[
-
»

T T TR I

-
n
~

N
-~
-~

&3

N
NEHBRVPURNWORENERDROERIDHEFRVBWUE MO UOMRE-W

¥,
vorv

1,88

R TR TR S
- L

~N

1,R,K,

l.‘ ”l
dudbp
wronnw®?

- NN

CA-A-R -

- 9 -
RN

-

-

-~

-~

-~

~

~

3,528 1,580 , 1,KK,E)

{ 2,0 ,s8 3848582 1,kK52D , 1,58,8) 16
{1,8,88 3,858 3,A ,tD , 1,5Z,8] 19
{ 1,%8,8 3,858, 1,88,8 2,8K,EK) 20
%, 3,80 ,EK, 3,5,BK, 1,8K,E]

{20 D ,%,85, 3,8,0 ,E, 3,REEK, 1,B,EE] 21
k, 3,5,k 1,5,K,D , 1,K,K,E)

[20 ,:E, 3,8EKE 3,A ,E,D , 1,KE,K) 22
[2,0 ,x,x, 3,8,k 1,BL,8, 28%,88) 23
2,8,%2,8 3,R%,E, 1,EK,R)

{ 2,0 ,sE, 2,8K,E, 3,.E%8,8, 1,E%8,.E] 24
l‘l'l 1l‘l.'.l 3"""' 1I.!ll'l

[2,p D ,&,k, 3,5,D ,K, 3,KBE,E 1,EER] 21
[2Dp ,xR, 2,KEE, 385K, 1,k&k8&.] 24
3,t,EE 3,A ,5D , 1,8,E8)

[20 ,E,t% 3,88, 3,A ,E5D , 1,KK,K] 22
{1,zz2,2 382,88 3,A ,58 2§58} 2s
3,%,2,8 1,8,R,K, 2,K8,K)}

{ 2,0 ,m.E, 3,8%,% 1,%K8, 2,8KK] 23
{ 1,8,%,8 3,8EE, 3,A ,EE, 2,K5E,R) 25
{1,858, 3,8, 1,LEBE, 1,ED ,E) 26
,E,%, 3,8,D ,E, 3,8,E,B 1,R K, R)*ereeseeecgngpecified Receptionteesseesase
e, 3,8,8% 3,A ,ED , 1,R,E,8)

{10 ,R,R, 3,55,E 388D , 1,KLE} 27
[2,0 ,sE, 3,BEEK 3,A L% 2,K8K] 28
%, 3,8,88, 1,E,.EK,EB 2,EEE)

{ 2,0 .k, 3,B,%% 3,A ,EEK, 2,KEKE) 28
{ 2,0 ,mt, 3,KE.E 1,K5R,EK 1,50 ,E] 29
5, 2,%,8,B, 3,8,E,B, 1,8 B, R)*ssecetsetUngpecified Receptiontesseeneses
3,5,%,% 3,A ,K,E 2,KK,B)

{20 ,s,E, 3,%EkX 3,A ,KE 2,EKEE] 28
{1,288 3,%8% 3,A ,REK 1,5D ,E} 30
3,s,t,t 1,88,k 1,80 ,E)

[20 ,tEk, 3,85, 1,81, 1,80 ,E) 29
{1,558 3,8E8 3A ,8E 1,80 ,E) 30
E, 3,8,5,%, 3,8,E,D , 1,K&,E)

{20 » .zt 3,21c% 3§D , 1,EE,E) 31
{1ip ,mx, 3,KKK, 3,EE¢E%, 2EEE) 32
x, 3,R,2,K 3,A KK, 2,KK,12)

{10 ,eE, 3,8EE, 3EKLE 2,EEE) 32
f 2,0 ,t,B, 3,8,RE 3,A LK, 1,BD ,E] a3
E, 3,%,2,8%, 1,K,E,E, 1,KED ,E)

{ 2,0 ,m,&, 3,8, 3,A ,LE, 1,E,D ,B) 33
3,z .2 3,A ,EE 1,ED ,E]

{ 2,0 ,Ecx, 3,EX,E 3,A ,EE 1,ED ,E] 33
.58, 3,8EE 3,880 , 1,kE,B8)

{2 » ,5E, 3,LE,EB 3,8K,8 2K%E8R] 34
%, 3,1,BK, 3,KE,K,E 2,RER)

{20 » ,x,x, 3,KR.% 3,LE,% 2,KEKE] 3
{10 ,ecE, 3,88kE 3,REE 1,8D ,E] 3s
E, 3,%,%% 3,A ,EE, 1,ED ,E)

{10 ,E%, 3,85%,E 3,K8,EK 1,80 ,E] 3s
B K, 31':"': 3!"'!‘! 21'1.1']

{20 D ,E,X, 3,KE8% 3,%EE 1,20 ,E}] 36
x, 3,8,k 3,KE,E 1,8D ,E]

{20 p ,t, 3,tt8 3,5RcE 1,50 ,2} 36
,&,E, 3,5,E,E 3,8EK,E 1,B,D ,p]tessressectngpacified Receptiontesessesses

OF REACHABILITY ARALYSIS (AMALYSIS COMPIETED)

Total number of states generated : 36
Bumber of states analysed : 36
number of deadlocks : 0

number of unspecified receptions : 3
saximun message queue sise : 2
channel overflow :NONE

UNEXECUTED TRANSITIONS

| Machine 2 Unexecuted Transitions |

| Prom | To | other machine | Unexmecuted Transition |

1 2 [S| 4 | F D |

Figure 35: Program output for the example protocol

51

2. Analysis of Information Transfer Phase of the LAP-B Protocol

In this Section, analysis of a Data Link Control (DLC) protocol is described using
the Simple Mushroom program. The LAP-B protocol is modeled and analyzed with CFSM
model [Ref. 14]. A simplified analysis of the information transfer phase of the protocol,
which includes only I-frames with a window size of 2, will be described below.

This analysis is important in two ways. First, it verifies that the program is correct
by obtaining the same analysis results as in [Ref. 14]. Secondly, it is a good example to
show that the total number of global states can be very large, even for such a limited
protocol. The description of the information transfer phase is explained below as it appears
in [Ref. 14].

The network nodes, which are connected by the protocol, consist of a Data
Terminal Equipment (DTE) and a Data Circuit Terminating Equipment (DCE). In this
model, DTE and DCE are considered process 1 and process 2 respectively. Each of these
processes are also modeled as three sub-processes: Sender, Receiver and Frame Assembler
Disassembler (FAD), which are numbered as 1 or 2 according to their process numbers.

Figure 36 shows the processes and how they are connected. The FAD process
combines data blocks from the Sender with acknowledgments from the Receiver, into
complete I-frames and sends the I-frames to the FAD of the other process. The FAD also
breaks up the I-frames received from the other FAD and sends the acknowledgment to the
Sender, and data blocks to the Receiver.

I-frames are expressed by the notation “Inm”, where n is the send sequence
number N(S), and m is the receive sequence number N(R). The message “Di” is a data
block sent from the Sender to the FAD, or from the FAD to the receiver; it is the data block
which is to be placed in, or which is taken out of, the I-frame. The “i” in “Di” is the send
sequence number. The message “Ai” is an acknowledgment with a receive sequence

number of i.

52

aseyq J9JSURI] UOTBULIOJU] o..z 10J 595530014 :9¢ am3BL{

W =
Fa: 1C (1135 [ON'E
. (N (SN ‘1
(N
oW
avi
ow [
TWAAIADAY (N
(AN ‘(SN ‘1
SN1
a0d

€W
1avd

q.' @W
SINT | uaAIzD 3
——

(3N

— W
N | yy3anas
-

{SIN ‘1

41d

53

The finite state machines for the Sender, Receiver and FAD of the DTE are shown
in Figures 37, 38 and 39. The FSMs for the DCE are the same except that FADI,
RECEIVER]1, and SENDER1 must be replaced with FAD2, RECEIVER2, and SENDER2
respectively. Since no RR-frames are used, I-frames can only be acknowledged by
receiving an N(R) from an incoming I-frame.

As an example, suppose the DTE Senderl has 3 data blocks to send. It can go
from state 1 to state 2, sending “DO0,” and then to state 3, sending the second block as “D1.”
At this point, 2 data blocks are outstanding, so it must wait for an acknowledgment of at
least one of them before sending the third.

The DTE FADI1 process, initially in state 1, will receive the DO from Sender] and
enter state 2. It then sends an “enquiry” to the Receiverl to get the latest acknowledgment,
an N(R), for the data blocks received from the DCE.

Since no data blocks have been received by the DTE yet, Receiverl will respond
with an “A0.” FAD1 will receive the A0, and will transition from state 8 to 11. The FAD1
will then return to state 1 sending the I-frame “I00.” Similarly, the FAD1 will receive the
second data block, D1, and transmit it as “I10” after combining with “A0Q.”

FAD2 will receive the “I00” frame first, entering state 20. It then splits this I-
frame and sends the “D0” to Receiver2, and “A0” to Sender2.

Sender2 is in state 1, and simply discards this “AQ.” Receiver2 is in state 1,
accepts the “D0” data block and transitions to state 2.

Similarly, The DCE FAD2 process receives the “I10” message, and sends the
“D1” to Receiver 2, and “AQ” to Sender 2. Sender 2 will discard the “A0”, remaining in
state 1, and Receiver 2 will receive “D1,” transitioning to state 3.

Suppose at this point a user data block becomes available to send at the DCE. It
will send an “102” frame across the data link to the DTE; and upon receiving the 102, the

DTE will now be able to send the third user data block.

54

[¥1 "39d] 1 39puss :L¢ am31]

1ava ‘tv+

1avd ‘1v+

1AV ‘1v+
1ava ‘v

1av4 ‘TV+

1avi za-

1ava

1av4 ‘Tv+

1avi 1v+

1avd ‘1v+

1avd ‘1v+

1avia ‘ov+

1ava ‘ov+

55

1avd Tv-

(b1 '39¥] 1 3941209y :8¢ ANy

avd ‘ONa+ 1av4 ‘1v-

1avi ‘ig+

1avd 70+ 1avd ‘oa+

1av4a ‘ONI+ 1avi ‘ov-

1AV ‘ON3T+

56

[¥1 39u) (Lred 19[quuassY) [V JFqUIFSSESI JIIQUIISSY Jures] ‘e6e unB1y

wavd ar - avi ‘wr1- avi ‘o1

1 ¥3AI303Y
v+

1 ¥3AITOIY
v+

1 33A1303Y

‘ON3- 1 ¥3AITOAY ‘DNI- 1 ¥3AI3DAYN ‘ONI-

1 W3AN3S ‘10+ 1 43AN3S ‘oa+

-

©

(LAVd 3TTEWASSVSIA OL)

avi ‘ool

57

[#1 Jo] (Wed J91qudssESIQE) [V JIIQUISSSESI(JIqUINSSY IRl :q6¢ amBL

1 HIAIIOAN
7a-

1 YAANIS
‘Iv-

1 ¥IAIA03Y 1 ¥3AI3O3Y

‘od-

«“a-

1 ¥3AN3S
‘ov-

wavd wavd wavi wavd wave zavd wavid
s ‘ar ‘201+ ‘e ‘ou+ ‘on+ ‘01+
) -
I
C (LYVd 33 T4WASSY OL)

For the automated analysis of the protocol, the FSMs in Figures 37, 38, and 39 are
converted to a text file and entered into the program as shown in Appendix A. The
transition names in this text file are the same as in the FSM diagrams, such as “+I00”,
“+D0” etc. In order to save memory and generate a larger number of states in the analysis,

the transition names can be abbreviated to single characters at the time of the analysis as

shown below:

D0 ->X 100 -> 1
DI->Y 101 ->2
D2->Z 102->3
A0->A 110->4
Al->B I111->5
A2->C 112->6
ENQ->Q 120->7

121 ->8

122->9

The amount of memory available and the CPU time are always a concemn for a full
reachability analysis. The program output for the analysis is partially given in Appendix A.
Because of the size of the analysis, only a very small portion of the reachable states are
included in the output. The total number of global states generated for the information
phase was 73391. There were no unspecified receptions, unexecuted transitions, and
channel overflows. The maximum channel length was 6. A deadlock condition was found
at state 17034 where all the channels were empty and Senderl, Receiverl, FAD1, FAD2,
Sender2, Receiver2 were in states 3, 3, 1, 1, 3, 3 respectively. This state deadlock is
expected since RR-frames are not included in the analysis. A more detailed explanation
including the RR-frames in the protocol is given in [Ref. 14]. The reader may note that the
results of the analysis exactly match with the results reported in Reference 14. The
deadlock state found in Reference 14 was 67699, which was recorded at state 17034 in this
analysis. However, the global states are the same for both analyses. The Simple Mushroom

program uses a Breadth-First Search algorithm for choosing the states from the work set

59

(i.e, global states that are generated, but have not been analyzed yet). The protocol verifier
PROVE, used in Reference 14 might be using a Depth First Search approach, which would
result in a different global state number.

The protocol, including the RR-frames, was also entered into the program, but the
program could not complete the analysis due to insufficient computer memory. In this
analysis, 153565 global states were generated. No unspecified receptions, deadlocks or
channel overflows were recorded for the analyzed portion of the protocol. The maximum
channel size reached was 4. The program completed the analysis in 11 hours 51 minutes on

a Sun SPARC station.

B. SCM MODEL

1. GoBack N

The first protocol selected for analysis using the Big Mushroom and Smart
Mushroom programs is a 1-way data transfer protocol with a variable window size, which
is essentially a subset of the High-level Data Link Control (HDLC) class of protocols. This
protocol is modeled and analyzed with the SCM model in [Ref. 1]. The same specification
will be used here and an automated analysis will be described using the programs
developed for a window sice of 10. The specification is summarized below:

There are two machines in the system, a sender (m;) and a receiver (mj). The
sender sends data blocks to the receiver, which are numbered sequentially, 0, 1,..., w, 0, 1,
... for a window size of w. As in HDLC, the maximum number of data blocks which can be
sent without receiving an acknowledgment is w, the window size. The receiver, m,,
receives the data hlocks and acknowledges them by sending the sequence number of the
next data block expected (which is stored in local variable exp). The shared variables

DATA and SEQ are used to pass messages from sender to receiver, and the shared variable

ACK is used to pass acknowledgments back to the sender. The receiver may acknowledge
any number of blocks received up to the window size. Upon receiving the
acknowledgment, the sender must be able to deduce how many data blocks are being
acknowledged. This is done by observing the difference between the values of the received
acknowledgment and ine sequence number of the last data block sent.

The general specification of the protocol is given in Figure 40 and in Table 4.
Initially, both sender and receiver are in state 0, arrays DATA and SEQ are empty, and
ACK is empty. The domains of DATA, Rdata and Sdata are not specified; these are used
to hold user data blocks. Sdata and Rdata are the interface or access points of the higher
layer (user) protocol. The local variables for the sender are Sdata, used to store data blocks,
seq, used to store the sequence number of the next data block to be sent out, and i, used as
an index into the DATA and SEQ arrays. Initially seq is set to 0, and i is set to 1. The local
variables of the receiver are Rdata, exp, and j. Rdata is used to receive and store incoming
data blocks, exp to hold the expected sequence number of the next incoming data block, and
Jj is an index into the shared arrays DATA and SEQ.

The states of both sender and receiver are numbered 0, 1, ..., w, and each state has
an easily recognized intuitive meaning. If the sender is in state 0, then all data blocks sent
to date have been received by the receiver, so a full window size of w data blocks may be

sent without waiting for an acknowledgment. If m; is in state w, then a full window of

blocks have been sent, so the sender can only wait for the acknowledgment from the
receiver.

If the receiver, m,, is in state O, then all received data blocks have been
acknowledged. If in state w, then a full window of data blocks have been received, but not
acknowledged. Whenever the receiver sends an acknowledgment, all data blocks received

up to that point are acknowledged.

61

DATA SEQ

w
ACK
1 2 w
Sdata : Rdata :
seq:(0,1,2,...,w) exp:(0,1,2,...,w)
i:(1,2,...,w) j:(1,2,...,w)

Figure 40: State machines and variables for Go Back N

TABLE 4: PREDICATE-ACTION TABLE FOR GO BACK N

Transition Enabling Predicate Action
DATAC() « Sdata(i)
-D DATA() =€ ASEQ() =¢ SEQ(i) &« seq
inc(i, seq)
ACK®k=seqgA ACK#¢ ACK «¢
+Ay (next state . k)
O<sksw)
DATA()) # € A SEQ()) = exp Rdata « DATA())
+D DATAC()), SEQ()) « ¢
inc (j, exp)
-A
DATA() =¢ ACK « exp
Rdata « €

62

The enabling predicate and action for each transition are shown in Table 4. The
label or transition name is the leftmost column, the enabling predicate in the middle, and
the corresponding action on the right. There are four basic types of transitions. In the

sender, m;, the -D transition transmits a data block by placing it into the shared variable

DATAC(), and the sequence number into SEQ(i). The send is enabled whenever those
variables are empty. (The inte-action between the sender and the user, or higher layer, is
implicit, and not specified here). The inc operation increments its arguments, if less than -

their maximum value, in which case it resets them to the minimum value. The operator &
represents the inc operation repeated k times, if the argument is k and the symbol € denotes

the empty value. The receive transition in the receiver, m,, is enabled whenever a data block

of the appropriate sequence number is in the jth element of DATA and SEQ. An

acknowledgment may be sent by m, in any state except 0, in which case no unacknowledged
data blocks have been received.

The remaining transition is the +A; receive acknowledgment, in m;. If m; is in
state 4, 1 < u <w, and there is a nonempty value in shared variable ACK, then exactly one

of the transitions +Ay, +A;, ..., +A,,.; will be enabled; it will be that A; such that the

predicate ACK®k = seq is true, and the next state is k. [Ref. 1]

For analyzing this protocol using the Big Mushroom and Smart Mushroom
programs, the inputs to the program must be completed. These consist of a text file
description of FSMs, the package, definitions, which include the variables of the protocol,
and the subprograms Analyze Predicates Machines and Action, which define the
predicate-action table. Also an Qutput_Gtuple procedure, which defines the output format
for the global tuples, must be entered. Completed packages/procedures for a window size
of 10 are given in Appendix B.

The same names are used for local and shared variables in the package definitions

as in the predicate-action table. Variables DATA, ACK and Sdata are declared as one

63

dimensional arrays of size 10, which is the window size. Local variables seq and exp and
index numbers i and j are declared as integers in the range 0 to 10. Global variable ACK is
declared as integer in the range -1 to 10, where -1 represents € value in the predicate-action
table. An enumeration type, buffer_type, is declared for storing the data passed by the upper
layer to local variable Sdara. Data are declared as d0, d1, .., d9,e, where e represents the €
value. Transition names in the specification are defined as snd_data, rcv_data, snd_ack,
rcv_acki for -D, +D, -A, and +A; in predicate-action table respectively.

Actions and predicates are also translated to Ada statements in the subprograms
Analyze_predicates_Machines and Action. For each state in both machines there is a
“when” statement. The predicates for the outgoing transitions from that state are translated
to Ada with “if”’ conditional statements. Actions in the predicate-action table are converted
to Ada statements with “when” statements (see Appendix B).

The program generated 286 system states and 31,460 global states, which are
identical with the results obtained by the formulas given in [Ref. 1]. The protocol is free
from deadlocks and there are no unexecuted transitions. The difference between the
number of $ystem and global states shows the power of the system state analysis which
reduced the number of states in the reachability graph exponentially. However, without the
Smart Mushroom program, the system state analysis would be cumbersome to do manually,

and the global reachability analysis would be infeasible.

2. Token Bus
Another example of the program application, the token bus specification in [Ref.
15] will be used. The specification is a simplified one. It assumes that the transmission
medium is error free and all transmitted messages are received undamaged. Both the system
state analysis and global analysis are generated from this token bus specification for a

protocol consisting of 8 machines.

The specification of this simplified protocol is given in Figure 41 and Table 5. The
FSM diagram and the local variables are the same for each machine, where the transition
names: ready, rcv, pass, get-tk, pass-tk, Xmit, and moreD are appended with the
corresponding machine number to the end for each machine in the specification. For
example, transitions for machine 7 are named as ready7, rcv7, pass7, etc. This makes it
easier to follow the reachability graphs. The remainder of the protocol specification as
described in Reference 15 is as follows: The shared variable, MEDIUM, is used to model
the bus, which is “shared” by each machine. A transmission onto the bus is modeled by a
write into the shared variable. The fields of this variable correspond to the parts of the
transmitted message: the first field, MEDIUM.T, takes the values T or D, which indicate
whether the frame is a token or a data frame. The second field contains the address of the
station to which the message is transmitted (DA for “destination address™); the next field,
the originator (SA for “source address”); and finally the data block itself.

The network stations, or machines, are defined by a finite state machine, a set of
local variables, and a predicate-action table. The initial state of each machine is state 0, and
the shared variable is initially set to contain the token with the address of one of the stations
in the “DA” field.

The value of local variable next is the address of the next or downstream neighbor,
and these are initialized so that the entire network forms a cycle, or logical ring.

The local variable i is used to store the station’s own address. As implied by the
names, the local variables inbuf and outbuf are used for storing data blocks to be transmitted
to or retrieved from other machines on the network. The latter of these, outbuf, is an array
and thus can store a potentially large number of data blocks. The local variable ctr serves
to count the number of blocks sent; it is an upper bound on the number of blocks which can
be sent during a single token holding period. The local variable j is an index into the array

outbuf.

65

t DA SA data

MEDIUM

i : (my address)
rext : (address of next station)

cr :(1,2,...k+l)

J:(1,2,.,k)

morel

DA SA data t DA SA data
inbuf outbuf 1

Figure 41: FSM and variables for the network nodes

The local variables j and ctr are initially set to 1, and inbuf and outbuf are initially
set to empty. The shared variable MEDIUM initially contains the token, with the address of
the station in the DA field. Thus the initial system state tuple is (0,0, ..., 0) and the first
transition taken will be get-tk by the station which has its local variable i equal to
MEDIUM.DA.

Each machine has four states. In the initial state, O, the stations are waiting to
cither receive a message from another station, or the token. If the token appears in the

variable MEDIUM with the station’s own address, the transition to state 2 is taken. When

66

taking the ger-tk transition, the machine clears the communication medium and sets the
message counter ctr to 1. In state 2, the station transmits any data blocks it has, moving to
state 3, or passes the token, returning to state 0. In state 3, the station will return to state 2
if any additional blocks are to be sent, until the maximum count k is reached. When the
count is reached, or when all the station’s messages have been sent, the station returns to
state 0.

The receiving station, as with all stations not in possession of the token, will be in
state 0. The message will appear in MEDIUM, with the receiving station’s address in the
DA field. The receiving transition to state 1 will then be taken, the data block copied, and
MEDIUM cleared. By clearing the medium, the receiving station enables the sending

station to return to its initial state (0) or to its sending state (2).

TABLE 5: PREDICATE-ACTION TABLE FOR THE NETWORK NODES

Transition Enabling Predicate Action

rev MEDIUM.(t, DA) = (D, i) | inbuf «MEDIUM.(SA, data)

ready true MEDIUM « ¢

get-tk MEDIUM. (t, DA) = (T, i) | MEDIUM & ¢; ctr « 1

pass outbuf {j1 = o MEDIUM « (T, next, i, p)

Xmit outbuf [j] # ¢ MEDIUM « outbuf [jl;
cr—cr®l;je—jdl
outbuf {j] « o

moreD MEDIUM = ¢ A outbuf [j] # o| null

pass-tk MEDIUM = ¢ A MEDIUM « (T, next, i, 0)

(outbuf [fl=ovctr=k+1)

67

The symbol “@®” indicates that the variable should be incremented unless its
maximum value has been reached, in which case it should be reset to the initial value. The
notation MEDIUM (t, DA) is used to denote the first two fields of the variable MEDIUM.
For example, MEDIUM.(t, DA) = (T, i) is a boolean expression which is true if and only if
the first field of MEDIUM contains the value T, and the second field contains the value i.
Other notations in the predicate-action table such as “A”, “v”, “¢” etc. are intuitive.

The inputs to the program for the reachability analysis of this protocol are given
in Appendix C. The same names as in the specification are used for the local and global
variables in the package definitions. Also, the “empty” value is represented by “E” and the
data are represented by “I” in this package. The upper bound on the number of data blocks
in the outbuf variable is set to 7.

The system state analysis alone did not give a complete analysis due to some
loops in the FSMs of the SCM specification. Since the system state analysis assumes that
two system states are equivalent if both the machine state tuples and the outgoing
transitions are the same, this can cause the system state analysis to give insufficient results
in some special cases. For example, incomplete results can arise when the FSMs of the
specification include some loops that result with the same states and enabled transitions
repeatedly. In such specifications, some of the transitions will stay unexecuted, resulting an
incomplete analysis. This situation is observed in this specification when one of the
machines had two or more data blocks in its outbuf local variable. For instance, if machine
1 has two data blocks in its outbuf local variable waiting for transmission and it receives
the token from MEDIUM, it transitions to state 2 with ger-tk and then takes the Xmir
transition to state 3, sending the first data block. Since it has one more data block to send,
the next transition will be moreD, which will take it back to state 2. At this point the system

state analysis will stop and the reachability analysis will be incomplete.

68

The problem can be solved by splitting the system state analysis into three parts.
First, the protocol can be analyzed with no messages in the machines and the behavior of
the machines including only the transitions of the token can be observed (transitions get-tk
and pass). Then, the analysis can be performed with one message in the outhbuf local
variables of the machines, which allows us to analyze the transitions for receiving/
transmitting the messages in addition to the transitions including the token (gez-tk, Xmit,
rcv, ready, pass-tk). Finally, the protocol can be analyzed with each machine having more
than one message, which includes the last transition in the analysis (moreD). Combining
the results of these parts shows that the protocol is free from deadlocks and there are no
unexecuted transitions.

The definitions packages and the analysis results are given separately for each of
the three cases outlined above in Appendix C. The system state analysis generated 16, 40
and 5 system states respectively for the parts explained above. The global analysis has
generated 263 global states and there were no deadlocks or unexecuted transitions. The
global reachability analysis is also given in Appendix C.

The system state analysis has reduced the number of states from 263 (global) to
61 (for all three parts). This is another example showing the advantage of the system state

analysis.

69

VI. CONCLUSIONS AND FURTHER RESEARCH POSSIBILITIES

In this thesis, a software tool has been described which automates the analysis of
protocols specified by the SCM and CFSM models. The program generates either the
system state analysis or global reachability analysis for the SCM model. The program also
generates the full reachability graph for a protocol specified by the CFSM model.

The major achievement of the thesis was the increase in the number of machines in the
protocol specification. The previous work in [Ref. 8] was extended to allow two to eight
machines in the specification. The run time and memory efficiency of the program were
improved to allow the analysis of larger and more complex protocols. The user interface of
the program has also been improved.

The system state analysis reduces the size of the state space greatly, but in some cases,
when the system state analysis is not sufficient for the protocol analysis, the global
reachability analysis is required. The Smart Mushroom program generates the system state
graph. The>Simple and Big Mushroom programs are based on exhaustive analysis, and
generate the full global reachability graph. The main problem in these programs is the
“state space explosion.” As stated in [Ref. 16], an estimate for the maximum size of the
state space that can be reached for a full reachability analysis is about 107 states. This is in
agreement with the maximum number of states generated so far using the Big Mushroom
program (153565 = 1.53 x 10° states were generated for the example protocol described in
Chapter V).

The size of the state space which can be generated is directly proportional with the
memory available on the computer. For a full reachability graph, an equation can be derived

for determining the maximum number of states: where,

70

M: Memory available on the computer (bytes).

S: Amount of memory for storing one system state (bytes).

O: Overhead (memory for storing the program and other data structures etc.).
Then, the number of states that can be analyzed is: N = (M-O)/S. Usually O << M, and

O can be ignored. For instance, for the LAP-B protocol analysis described in Chapter V,
M=80 MBytes, S = 516 bytes, and N = 162596. In this analysis, only 153565 states were
generated by the Simple Mushroom program. The difference between these numbers is due
to the exclusion of the overhead in the calculation. Unfortunately memory was not enough
for a 100% coverage in this analysis.

In spite of the state space explosion, the programs developed in this thesis are still very
helpful for analyzing protocols. A full reachability analysis may be feasible by keeping the
protocol specifications as simple as possible, and using certain assumptions about the
behavior of the protocol to reduce the size of the state space. For example, the size of the
message queue is very important for the CFSM model. A smaller message queue decreases
S and allows to analyze larger protocols. A specification with less number of processes
increases the number of states that can be analyzed. Modeling the machines with less
number of states is also helpful. For the SCM model, N can be increased by keeping the
size of global and local variables as small as possible. A simpler protocol specification also
reduces the run time.

But, in some cases, even after some simplifications, a full reachability analysis is
impossible. Fortunately, still some solutions exist for the automated protocol analysis. One
method which is described in [Ref. 16] is using the supertrace algorithm. In the Mushroom
program, hashing is used to increase the search efficiency. In the supertrace algorithm a
very large hash size (almost the whole available memory) is used, and system states are not
stored. This method is explained in [Ref. 16]. For example, with a 10 MB of memory, 80

million states can be generated using this method as described in [Ref. 16]. Of course this

71

efficiency does not come free. Due to hash conflicts, this method cannot guarantee 100%
coverage, but as a partial search technique, this algorithm is very powerful.

This thesis opens several areas for further work. One improvement would be to
increase the size of the system space that can be analyzed. Adding the supertrace option to
the Mushroom program can be a good area for further work.

The number of reachable states is usually very large and it would be awkward to print
out or browse through the listing. Another improvement would be to store the reachability
analysis results in the form of a database, and provide a query language that allows the user
to easily analyze the results of the analysis as suggested in [Ref. 17] (for instance, querying
the error sequences and certain paths between any two states etc.).

Finally, another research possibility would be to add a simulator module to the
Mushroom. For protocols with a large size of state space, where full reachability analysis
is infeasible, simulation would be useful.

The Ada programming language was used to develop Mushroom. Also, specification
of the SCM model must be entered to the program using Ada subprograms and packages.
Ada is a well-structured programming language, and supports the modular development of
programs. Also, exception handling, generic units, and tasking are important features of
Ada. These features were helpful in developing the program. The well-structured property
of the programming language makes the input of the specification easier. The tasking
mechanism of Ada would be very helpful to develop a simulator module for the program.

The Simple Mushroom program is used as a teaching aid in an introductory
communications network course at Naval Postgraduate School. This can be another area
where student can use the tool as an aid in learning the protocol design and analysis.

The mushroom program is a tool which it is hoped that it will greatly improve the

design and analysis of protocols specified by the SCM and CFSM models. Especially, this

72

program may help to solve some questions concerning the SCM model which have not been

completely answered.

73

APPENDIX A (LAP-B Protocol Information Transfer Phase)

FSM Text File

tzans -D1

trans +A0

trans -D2

state

state 6
txans -A2 3 3
seachine 3
state 1

trans +D0 2 1
trans D1 3 1

trans +100 20
trans +110 21
trans +I20 22
trane 4101 23
trans +I11 24
trans +I21 23

trans 4112 27

bbb d

state 2
tzrans -BNQ § 2
state 3
trans -ENQ 9 2
state 4
trans -ENQ 10 2

74

state

stste
trans
state

state
trane
trans
trans

E4E4EERESERE ERE"

N NN NN N N NN A s e s s s s NN NNN MDNN

3 34

]
P~
awN

4300
+110 21
+I120 22
4101 23
+111 24
+121 2%
+102 26
+112 27
+122 28

WWWLWLWWLLW

75

state

state
trans
state
trans
state
trans
state
trans
stste

state
trans
stste
trans
state
trans
state
trans
state

state
trans

machine S

state
trans
trans
state
trans
tzans
trans
state
trans
trans
trans
state
trans
trans
state
trans
trans
trans
state
trans
trans
trane
state
trans
trans

1

+A0
-Do
2

+A0
-pl
+A1

+Al
422
4

+Al1
-bD1

+al
+A2
-D2

+al
+A0
+A2

A2
-D2

29
30
30
30
N
3
3

«aWwNn ~ - [
"]

~S W

obbd LN N b &bk

L] [Ao [X N (T

-

W W W e eanea

L ¥ 3 LY

76

vYew e
BB ONe

-333.339.

144

HE

| other machine | Transition

Program Output
SPECIFICATION

To

REACHABILITY ANALYSIS of : fad.fsm

Machine 1 State Transitions

From

-A2 3 4

initial state 111111

“Al 2 4

state 6

state S
finish

483043334354 3833333338334

HAMAHMHNNNMNAONNEINNNHNOGN NS NN

MOMOONOHOMNOOONMNOHONONONONMOM

HONNNMEITMOIETNNIEVO RO~ DR OO NT

HANNNNNNPITNNNLVOEEOOOONRO

77

| Machine 2 State Transitions]

Prom	To	other machine	Transition
1	4	3	r ENQ
1	2	3	r DO
{ 2 (-	3	r ENQ	
2	3	3	r D1 i
3	6	3 i r ENQ	
i 3 I 1] 3] r D2 [}			
4	1	3) s A0	
L]	2	3 { s Al	
[] 3 [} 3 i s A2 I			

| Machine 6 State Transitions |

| Fxom | To | other machine | Transition |
ENQ
Do
BNQ
3 8
ENQ
D2
A0
Al
A2

AN WWNNE M
bbb
LN B BB RN,

REACHABILITY GRAPH

1 LEEEELELEEE,LEE,LEEELEE,LEE,E,EE, 1,EE,EELE,LE[EEFE[FE]
-D0 3 [2,E,DO,EE;E, 1,E EE,EE, 1, EEELEE1EEEEELEEEEELEEEFEE]
-D0 4 [LEEEEFE 1,EEEEE,1ELELEEE,LEFEEEE2EEFEDO,E,LEEELE[E]

2{2,E,D0,E,EE LEEEEE,1EEEEE,LEEEEELEEEEE,LEEEEE|]
-D13 (3,E,00D1 E,EE LEEEELE,LEEEEE,LEEEEELEEEFEELEEEEFE]
+D0 1 {2,EE,EEE I,EEELEE2ELEELEEFEEEEEE,LEEEEEFE,IEE.EE,E]
-DO0 4 {2,E,DO,E,EE, 1EEE,EE, |LEEFE,EF,1,EEEEFE2EFED,E,1,EELELEE!

3(LEEEEELEEEEELEEEEELEEEEE?2EEEDOELEEEEE]
-D03 | 2,E,DO,E,EE, LE,EEEE,1EEEEEF,LEEEEFE2EEED,E,1EE,LELE|
+DOS(LEEEELELEEEEELEEELEE_EEEEE2EEEEE1EE[EEE]
-D1 4{LEEEEE LEEEEELEEEEF,1EEFEFEEFE,3EEEDODL,E 1EEEEE)

4[3EDOD1,EEE,1EEEEELEEEELE,LEEEEELEEELEE,1EEEEE]
+D0 1 [3,E,D1,EEE,LEE,EEE2EEEEE,LEEELFELELEELE,1ELE.EEF]
-DO 4 {3,E\DOD1,EEE, 1EEEEE,1EEEEEELEEEFE?2EEED,ELEEEEFE)

SI2,EEELEE LEEEEE2EEEEELEEEELELEEEEELEEEEE]
-D13{3,E,D1,EEE,LEEEEE2EEEEELEEEEELEEELE,LEEEEE]

-ENQ 2 [2,E,EEEE, 1 EEELEE,SEENQ EEE, LEEEELE, LEEEEELEEELEFE]
-D0 4 {2,E,E\E,EE, |,EEEEEE2EEELEE1EEELEE,2EEEFED,ELEELEEE]

78

[BT 3 wN

L N

17034{3,E.E.E.E,E,3,EEEEE,1LEEELE, lmu 3EEELEE3EEEEFE]

ssessesess A DLOCK condition ***oessssstsss

17035(6,E,EE.EE 3 EEELEE,%EE 111 2LEE, LEEEEFE3EEEEE2EEEEE)
‘Al 1{6EEEEE3EEEEE1ALENIRLEE,LEEEEEEEEFEF2FFEFE) 17034

73391...

SUMMARY OF REACHABILTY ANALYSIS (ANALYSIS COMPLETED)

Total number of states generated : 73391
Number of states analyzed : 73391
aumber of deadlocks : 1

number of unspecified receptions : 0
maximum message quene size : 6
channel overflow : NONE

UNEXECUTED TRANSITIONS
sessNONE?® -+*

79

APPENDIX B (Go back N Window Size of 10)

FSM Text File

stazt
number of machines 2
machine 1

trans snd_dats

trans roev_ack0
trans snd_dsts

txans rov_ackd
trans snd_dats
trans rev_ack0d
tzans rov_ackl

trans rav_ack2
trans sad_data

trans rov_ack0
trans rev_ackl
trans rev_ack2
trans rav_ack3
trans snd_dats

trans rov_ack0
trans rov_ackl
trans rov_ack2
trans rov_ackl
trans rov_aakd
trans snd_data

trans rev_ack0
tzrans rov_ackl
trans rov_ack2
trans rov_ackl
tzans zev_ackd
trans rev_ackS
tzans snd data

3
&
¢

tzans rov_ack0l

trans rav_ackl

i
lalgl
3

trans rov_ackd

i
él
:

trans rov_acké
tzans snd_data

a
8
H
[]

trans rev_ack0
tzane rav_ackl
trans rov_ack2
trans rav_ack3
trans rov_ackd
trans rev_ack$
trans rcv_acké
trans rov_ack?
trans snd_data

trans rav_sck0
trans rov_ackl
trans rov_ack2
tzans zov_ackd
trans rov_ackd
trans rov_ackS
tzans rov_acké
trans rov_ack?
trans rov_ackl
tzans snd_dats

HOVAVMAWNFMFO VNOARAMAWNKMO OAVAWNKEO Y VNOWUNHO AMWUNKMFO VUWNNFNO ANMHO WHO NO

80

é
11 aI!Igs
EEERE

:

‘.~I§

{
THE
g

i
4

‘g'
g
»
'™

i
:

state 10

trans sad ack 0
initial_state 0 0
finieh

81

Variable Definitions

with TEXT_IO; use TRXT_IO;
package definitions is
num_of machines : constant := 2;
typo .c- transition_type is
(snd_data, rev r_data, rov_; _ack0, rov _ackl, rov_ack2, rov_ack3, rov_ackd,
rev_ ack$, rov aekc,zcv ack?, rev .ok. rov .cks snd_i ack, unused) ;

type buffer type is (d0,d1,d2,d3,d4,d5,d6,d7,48,49,e);
package buf?f _enum_io is new enumeration_io (buf!.z _type) .

use buff_ enum_io;

type buffer _array _type is array(l..10) of buffer_type;

type seq_array ! type is array(l..10) of integer range -1..10;

type machinel_state_type is

record
Sdata :buffer_ array type := (d0,d1,d2,d3,d4,d5,46,47,48,49);
seq : integer range 0..10 := 0;
1 :integer range 1..10 := 1;
end record;

type dummy type is range 1..255;

type machine2_state_type is
record
Rdata:buffer type := a;
exp :integer range 0..10 := 0;
3 :integer range 1..10 := 1;
end record;
type machine3 state_type is
record
dusmy : dusmy type’
end record;

type machined_state_type is
record
dummy : dummy type;

end record;

type machine5_state_type is
record
dummy : dusmy type;
end record;

type machine6_state_type is

record
dummy : dummy type;
end record;

type machine7_state type is
record
dusmy :@ dummy type;

end recorxd;

type machine8_state_type is
record
dusmy : dusmy type;
end record;

type global_variable_type is
record
DATA : buffer_array_type = (e,0,0,0,0,8,0,0,8,8);
SEQ : seq_array_type = (-1,~-1,-1,-1,-1,-1,-1,-1,-1,-1);
ACK : integer range -1..10 := -1;
end record;

end definitions;

82

Predicate-action Table

separate (main)
procadure Analyse_Predicstes_Machinel (10cal : machinel_state type;

GLOBAL: globsl_varisble type;

s : mnstural;
v :in out trsnsition_stack_psckage.stack) is
templ : integer :e GLOBAL.ACK + 0;
temp2 : isteger := (GLOBAL.ACK + 1) mod 11;
temp3d : integer := (GLOBAL.ACK ¢+ 2) mod 11;
tempd : integer := (GIOBAL.ACK + 3) mod 11;
tempS : integer := (GLOBAL.ACK 4+ 4) mod 11;
tempé : integer := (GLOBAL.ACK + 3) mod 11;
temp7 : integer := (GLOBAL.ACK + §) mod 11;
temp8 : isteger := (GLOBAL.ACK + 7) mod 11;
temp® : integer := (GLOBAL.ACK + $) mod 11;
templ0 : integer := (GLOBAL.ACK + 9) mod 11;
begin
case o i
when 0 =>

if ((GLOBAL.DATA (local.i) = E) snd (GLOBAL.SEQ(local.i) = -1)) then
Push (v, snd_data);
ond if;
when 1 =>
1f ((GLOBAL.DATA(local.i) = E) and (GLOBAL.SEQ(local.i) = ~1)) thea
Push (v, snd_dats) ;
end L£;

if ((templ = local.seq) and (GLOBAL.ACK /= -1)) thea
Push (v, xov_ack0) ;
ond if;
when 2 =>
if ((GLOBAL.DATA (local.i) = E) and (GLOBAL.SEQ(local.i) = -1)) tihen
Push (v, snd_dats);
end if;

if ((templ = local.seq) and (GLOBAL.ACK /= -1)) then
Push (v, rev_ack0) ;

end if;

if ((temp2 = local.seq) and (GIOBAL.ACK /= -1)) thea
Push (v, rev_ackl);

ond if;

when 3 =>

if ((GLOBAL.DATA (local.i) = E) and (GLOBAL.SEQ(local.i) = ~1)) then
Tush (v, snd_data);

end 1f;

if ((templ = local.seq) and (GLOBAL.ACK /= -1)) then
Push (v, xcv_ack0) ;

end i£;

if ((temp2 = local.seq) and (GLOBAL.ACK /= ~1)) then
Push (v, rov_ackl);

end if;

1f ((temp3 = local.seq) and (GIOBAL.ACK /= -1)) thea
Push (v, rov_ack2) ;

oend if;

when 4 =>

if ((GLOBAL.DATA(local.i) = E) and (GLOBAL.SEQ(locsl.i) = -1)) then
Push (v, snd_datas);

end if;

1f ((templ = locsl.seq) and (GLOBAL.ACK /= ~1)) then
Push (v, zev_ack0) ;

end if;

if ((temp2 = local.seq) and (GLOBAL.ACK /= -1)) then
Push (v, rov_ackl);

eand if;

83

1f ((temp3 = loacal.seq) snd

Push (v, zav_ack2);
end if;

Af ((tempd = looal.seq) and

Push (v, xrov_ack3) ;
end Lf;
when 3 =

if ((GLOBAL.DAYA(loasl.i) =

Push (v, snd_dats);
ond if;

1f ((templ = local.seq) and

Push (v, zrov_ack0) ;
end if;

if ((temp2 = local.seq) and

Push (v, rov_ackl);
ond if;

if ((temp3d = local.seq) and

Push (v, rov_ack2);
end if;

if ((tempd = locsl.seq) and

Push (v, rav_aakl);
end {f;

1f ((tempS = local.seq) and

Push (v, rov_ackd);
end if;
when 6 =

if ((GLOBAL.DATA(local.i) =

Push (v, snd_dats) ;
end if;

1f ((templ = local.

Push (v, rev_ack0) ;
end 1£;

if ((temp2 = local.

Push (v, xcv_sckl);
end if;

if ((temp3 = loaal.

Push (v, rov_ack2);
end if;

if ((tempd = local.

Push (v, rov_ack3) ;
end if;

if ((tempS = local.

Push (v, rov_ackd) ;
end 1if;.

if ((temp€ = loaal.

Push (v, rev_ack$);
ond if;
when 7 «>

seq)

seq)

seq)

seq)

seq)

seq)

and

and

and

and

and

if ((GLOBAL.DATA(local.i) =

Push (v, end_data);
end if;

1f ((templ = local.

Push (v, rev_ack0) ;
end Li£;

1f ((temp2 = loocsl.

Push (v, rov_ackl);
end if;

if ((temp3 = locel.

Push (v, rov_ack2);
end if;

if ((tempd = local.

Push (v, rev_ackl);
end 1f;

if ((tewpS = local.

Push (v, rov_sckd) ;
end if;

1f ((temp€ = local.

Push (v, xov_ackS);
ond 1if;

if ((temp7 = local.

Push (v, rov_ack$) ;
ond Af;
when § =>

seq)

seq)

seq)

oeq)

seq)

seq)

seq)

and

and

and

and

and

and

and

if ((GLOBAL.DATA(local.i) =

(CLOBAL .ACK /=

(CLOBAL.ACK /=

-1))

-1)})

than

then

E) and (GLOBAL.SEQ(looal

(GLOBAL .ACK /=

(GLOBAL .ACK /=

(GLOBAL.ACK /=

(GLOBAL.ACK /=

(GLOBAL.ACK /=

E) and (GLOBAL.

(GLOBAL.ACK /=

(GLOBAL.ACK /=

(GLOBAL .ACK /=

(GLOBAL.ACK /=

(GLOBAL.ACK /=

(GLOBAL.ACK /=

E) and (GILOBAL

(GLOBAL.ACK /=

(GLOBAL.ACK /=

(GLOBAL.ACK /=

(GLOBAL .ACK /=

(GLOBAL.ACK /=

(GLOBAL.ACK /=

(GLOBAL .ACK /=

R) and (GLOBAL

-in

~1))

-1))

-1))

-1))

-1))

-1))

-1))

-1))

-1))

-1))

s2Q(local

then

then

then

then

then

then

.88Q(local

~1}))

-1))

-1))

-1))

-1))

-1))

-1))

then

then

then

then

then

then

i) = -1)) then

.4) = -1)) then

.4) = <1})) then

.8EQ(loeal.i) = -1)) thea

84

Push (v, snd_dats) ;
end {¢;

if ((templ = local.seq) and
Push (v, rav_ack0) ;

oend if;

if ((temp2 = looal.seq) and
Push (v, rov_ackl);

end {£;

1f ((tempd = local.seq) and
Push (v, rov_ack?)

end {f;

1f ((tempd = local.seq) and
Tush (v, sov_ack3) ;

end {f;

1f ((tempS = local.seq) and
Push (v, rov_sckd);

ond &f;

if ((temp€ = local.seq) and
Push (v, rev_ack3) ;

end L£;

1f ((temp? = loosl.seq) and
Push (v, rov_ack§) ;

ond Lf;

4f ((temp$ » looal.seq) and
Push (v, zov_ack?);

end if;

when 9 =>

if ((GLOBAL.DATA (locsl.i) =
Push (v, snd_data) ;

ond if;

if ((templ = local.seq) and
Push (v, rov_ack0);

end {f;

if ((temp2 = loosl.seq) and
Push (v, rev_ackl);

ond 1f;

1f ((temp3l = local.seq) and
Push (v, xov_ack2);

ond 1£;

if ((tempd = loosl.seq) and
Push (v, rov_asckd) ;

ond if;

1f ((temp3 = local.seq) and
Push (v, rov_ackd);

ond {f;

if ((tempé = local.seq) and
Push (v, rcv_ack$) ;

end Af;

1f ((temp? = local.seq) and
Push (v, rav_acké) ;

ond i£;

if ((temp$ = local.seq) and
Push (v, rov_ack?);

end L£;

1f ((temp® = local.seq) and
Push (v, rov_ack8) ;

end L£;

(GLOBAL .ACK /=

(GLOBAL.ACK /=

(GLOBAL .ACK /=

(GLOBAL .ACK /=

(GLOBAL.ACK /=

(GLOBAL.ACK /=

(GLORAL .ACK /=

{GLOBAL .ACR /=

£) and (GLOBAL.

(GLOBAL .ACK /=

(GLOBAL.ACK /=

(CLOBAL .ACK /=

(GLOBAL.ACK /=

(GLORAL .ACK /=

(CLORAL .ACK /=

(GIORAL.ACK /=

(GLOBAL .ACK /=

(CLOBAL .ACK /=

=1)) thea

=1)) thea

=1)) then

~1)) thea

=1)) thea

=1)) then

=1)) thea

=1)) then

SEQ(local

=1)) then

=1)) then

~1)) then

=1)) then

~-1)) then

=1)) thea

=1)) then

=1)) then

=1)) thean

.4) = -1)) thea

if ((templd = locsl.seq) and (GLOBAL.ACK /= -1)) thea

Push (w,zov_ack$);
ond Lf;

when 10 =>

if ((templ = locsl.seq) and
Push (v, xov_sck0) ;

end Af;

if ((temp2 = local.seq) and
Push (w, rov_ackl);

end Lif;

if ((tempd = loosl.seq) snd
Push (v, rov_sck2);

ond if;

if ((tampd = local.seq) and
Push (v, xav_sck3);

end if;

if ((temp5 = loocal.seq) snd

(GLOBAL .ACK /=

(GLOBAL .ACK /=

(GLOBAL.ACK /=

(GLORAL .ACK /=

(GLOWAL .ACK /=

~1)) then
~1)) then
=1)) then
=1)) thea

=1}) thea

85

Puash (v, rov_ackd) ;

eond if;

1f ((tempé = local.seq) and (GLOBAL.ACK /= -1)) thea
Push (v, rev_ack$) ;

end if;

1f ((temp? = local.seq) and (GLOBAL.ACK /= -1)) then
Push (v, rov_ack§) ;

end {£;

if ((temp® = local.seq) and (GLOBAL.ACK /= ~1)) thea
Push (v, rav_aak?) ;

ond i€;

if ((temp® = locel.seq) and (GLOBAL.ACK /= -1)) thea
Push (v, rav_ack®) ;

ond 1f;

if ((templ0 = local.seq) and (GLOBAL.ACK /= -1)) them
Push (v, rav_ack9) ;

end 1f;

vhen others =>
aull;
end case;
end Analyse Predicates Machinel;

separate (main)
procsdure Analyse Predicates_Machine2(local : machine2 state_type;
GLOBAL: global_varlable type:
s: nstursl;
v :in out tramsition_stack package.stack) is
begin
oase 8 1o
when 0 =>
if ((GLOBAL.DATA(local.3)/=E) and (GLOBAL.SEQ(local.j) = locsl.axp)) then
Push (v, rev_dats) ;
ond if;
when 1(2(|3|4]516]718]|9 =>
if (GLOBAL.DATA (local.j)=R) then
Push (v, snd_sck);
ond if;
if ((GLOBMAL.DATA (local.})/=R) and (GLOBAL.SEQ(locsl.j) = locsl.axp)) then
Push (v, rav_data);
end 1if;
when 10 =>
12 (GLOBAL.DATA (local.j)=g) then
Push (v, snd_ack) ;
ond if;

when others =>
null;
ond aase; -
end Analyse Predicates_Machine2;

separate (main)
procedure Analyse Predicates_Mechine3 (local : machinad_state_type;
GLOBAL: global_variable type;
s : natursl;
v : in out transition_stack_peckage.stack) is

begin
aull;
end Analyse_Predicates_Machinel;

separste (main)

procedure Analyse_Predicates_Machined (local : machined_stste_type:
GLOBAL: global_variable_type;
s : natural;
w : in out transition_stack_package.stack) is

begin

null;
end Analyse Predicates Machined;

separate (main)
procedure Analyse Predicates_MachineS (local : mschine$_state_type;
GLOBAL: globsl_vsrlable Etype;
natural;
in out transitioa_stack_package.stasck) is

o s

begin
null;
end Analyse Predicates_MschineS:

86

separste {(msinm)
proasdure Analyse Predicates Machine€ (local : machine$ state type;
GLOBAL: global_varlable type:
s : naturel;
v : ia out transition_stack_package.stack) is

begin
mull;
end Amalyse_Predicates_Machineé;

separste (msin)

procedure Analyse_Predicates_Machine?(loasl : machine7_state_type;

GLOBAL: gl.ohl variable t _type;
astursl;

in out

s
L J
transition_stack package.stack) is
begin
null;
end Analyse_Predicates_Machine?;

separate (msin)

procedure Anslyse_Predicates Machine$ (local : machine$_state_type;
GLOBAL: global variable typo
s : natursl;
w : in out transitiom_stack_peckage.stack) is

begin

aull;
end Analyse_Predicates_MachineS;

separate (msin)
prooedure Action(in_system stste : in cut Gstate_recoxd type;
in transition : in out sam ¢ transition L_type;
out_system_state : in out Gstate_record type) is

hqln
case (in transition) is
when -ad data =>

out_system_state.GLOBAL VARIABLES .DATA(in_system_state.mschinel_state.i) :=
in system state.machine] state.sdata(in_system state.machinel state.i);
out_system_state.GLOBAL VARIARLES.SEQ(in_system state.mschinel state.i) :=

in_system state.madBin:l_state.seq:
out_system_state.machinel_state.i := (in system | state.machinel state.i mod 10) + 1;
out_system_state.machinel state.seq := ({(in_system state.machinel state.seq) + 1)mod 11);

when rcv_sck0 | rcv_ackl | rov_ack2 | rov_ack3 | rov_ackd
| rev_ackS lrcv acké | :cv ack? |:cv ackS |xov_i ackd =>

out_systea state.GLOBAL_VARIABLES .ACK := -1;
when snd_sck =>

out_system_state.GIOBAL VARIARIES.ACK := in system_state.machine2_state.exp;
out_ ,_system_ mto.uchlnoz state.Rdata := o;

when rev_data =>

out qlt- state.sachine? state.Rdats :@=
in_system_ -tnto.w VARIABLES .DATA (in_system state.machine?_state.j);

out_system_state .GIOBAL VARIABIES.DATA (in_system_state .machine2_state.]) := X;
out | ,_System_(. state. m VARIABIRS . SEQ (in | _system | state.machine2 state.j) := -1;
out_syetem_state.machine2 state.j := (in_system state.machine? state.j mod 10) + 1;
out_system_t state.machine2 _state.exp := (((In ,_system_state. machine2 _state.exp) + l)mod 11);

when others =>
put_line (“There is an error in the Action proocedure”);

ond case;

ond Action;

87

Output Format

separate (main)
Prooedure output_Gtuple(tuple : in out Gstate_record type) is
begin
if print_header then
new_line(2);
set_col(7);
Put_line (" =ml(seq,i,S8data), m2(exp, j,Rdata), (DATA,SEQ,ACK)");
print_header := false;
else
Put(" [& integer'image(tuple.machine state(l))):
put(" , ");
put (tuple.machinel_state.seq, width => 1);
put(" , “);
put (tuple.machinel state.i, width => 1);
put(* , *);
buff_enum 1o.put (tuple.machinel_state.Sdata(l), set => upper_casa):
put(* ,~ ¢ thr'M(tuplo.nchim_otato(z)));
put(® , ");
put (tuple .machine2_state.exp, width => 1);
put(” , “);
Put (tuple.machine2_state.j, width => 1);
put(® , ");
buff enum io.put (tuple.machine2_state.Rdata, set => upper_case);
for 1 in 1..10 loop
pat (" , ");
buff enum io.put (tuple .GLOBAL VARIABLRS.DATA(1),set => upper_case);
put (", ");
put (tuple .GLOBAL_ VARIABLES.SEQ(1),width=>1);
end loop;
put(® ,");
put (tuple.GLOBAL_VARIABLES.ACK, width => 1);
put(® 1"):
end 1if;

end output_Gtuple;

88

Program Output (System State Analysis)

REACHABILITY AMALYSIS of :gbn 10.som
SPRCIFICATION

| Machine 1 State Transitions |

| ’rom | To | Transition |
snd_data
rcv_ack0
snd data
rov_ack0
rov_ackl
snd data
rev_ack0
rev_ackl
rov_ack2
snd data
rev _ack0
rov ackl
rov_ack2
rev_ackl
snd data
roev_ack0
rov ackl
rov ack2
rov _ack3
rev _ackd
snd data
rev ackO
rev ackl
rev ack2
rov _ack3l
rov_ackd
rov_ack5

| |
| |
| [
| |
| |
| |
| |
| |
] |
| |
| {
| |
| |
| i
| |
| i
| |
| |
| |
| |
| |
{ |
| |
| |
I |
| I
I . I
| snd_data |
| rev ack0 |
| rov ackl |
{ rev ack2 {
| rev ack3 I
| |
1 l
| |
| |
| |
| |
| |
|]
| |
| |
| |
i |
| |
| |
| |
| |
i |
| |
| |
| |
| |
I {
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |
] i

rcov_ackd
rov _ack$S
rcv_acké
snd data
rev ack0
rev ackl
rcv ack2
rev ackd
rcv_ack4
rev_ackS
rov acké
rev ack?
snd data
rev _ack0
rev_ackl
rocv_ack2
rev ackl
rcv_ack4d

rov _ackS
rev_acké
rov _ack?
rev _ack8
snd data
rov _ack0
rov_ackl
rov_ack2
rev _ack3
rcv_ackd
rev ack$
rcv_acké
rov _ack?
rev acks
roev ack$9

EEEEHO00 000N RRRRRRORIIIIIIINARRRARANNNUNNLLALLAVWLWRNNNKKO
O P s |

gt b
co0oo

CROJAVAWNMOHGNAMAWNHOVNAVAWNMOOANAMAWNKFONNAMAWNHOMANAWRNHFOUMWNFROAMANKFOWHONO

10

L] [] -~ [n [w N [-]
— e ey rm em em em Ee e~ eme

v
o

11
12
13
14
pL

16

17
18
19

| Machine 2 State Transitions |

"
§

To | Transition |

rov_data |
rev_data |
snd ack)
rov_data |
snd_ack |
rov_data |
snd_ack |
rov_data]
snd_ack |
zov data |
snd_ack !
|
|
|
|
|
|
i
f
|

rcv_data
snd_ack
rov_data
snd_ack
rov_data
snd_ack
rov_data
snd_ack
snd_ack

COMOVOOOIOAOMOMOWONNM

HOVaOIJdoaUnesdbWWNNEMHO

© N # © OO0 = o0 = o0 oo
[S I
= O © 0 »» ©0 O O o oo

o O N = o
— el el b

REACHABILITY GRAPH
snd data
snd data
rov_data
snd data
rev _data
snd data
snd_ack
snd data
rocv _data
snd data
rcv data
rev_ack0
snd data 10
snd data 11
rov data 12
snd data 12
rev data 13
snd data 13
snd_ack 14
rev ackl 1
snd data 15
rov data 16
snd data 17
rov data 18
snd data 18
rov data 19
snd data 19
rcv _data 20
rov_ack0 0
snd data 21
rov_ack2 2
snd data 22
rev data 23
11 rov_ackl 3
snd data 23
snd ack 14
Jo snd data 24
rov _data 25
Jo snd data 25
rcv data 26
Jo snd data 26
rov data 27

- N O o o
DU RN D o D o D D o D e o g o g g g g g et g ey I g oy g) ey
CVURBIAVMUAEWN M

20
21

22

23

24
25
26
27
28
29

30

31

32

33

34
35
36
7
3s
39

40

41

42

43

44

45
46
47
48
49

© & W N = O © O W N +» ©

e W N = o
- e ek S

[R ™
N W O © © o

L S ™ I R)

w o © © o w

e © o O N

snd data
snd_ack

rev_ackl
snd_data
rov_data
rov_ackl
snd data
rov_data
rev_ack2
snd_data
rov_data
snd_data
rov_data
snd data
rov_data
snd_data
rov_data
snd data
rov_data
rov_ack0
snd data
rov_ack2
snd data
rev_data
rev_ackl
snd data
snd ack

rov_ack4
snd_data
rev _data
rev_ack3
snd data
rov_data
rov_ack2
snd data
snd ack

snd data
rov_data
snd_data
rcv_data
snd data
rev_data
snd data
rov_data
snd data
snd_ack

rov_ackl
snd data
rev _data
rov_ack3
snd data
rov_data
rov_ack2
snd data
rev_data
rov_ack$
snd_data
rcv_data
rov_ack4d
snd data
rov_data
rev_ack3
snd_data
rov_data
snd data
rov_data
snd_data
rov_data
snd _data
rev_data
snd data
rov data
snd data

!

1

!

[

U

}

27
28

29
30

k31
32

32
33
34

3s
36
36
37
37
3s

3

40
41

41
28

4?2
43

43
44

4«
28
45
46
46
47
47
48
48
49
49
50

S1
52

53
54

54
55
11
56
57
12
57
58
13
38
59
60
61
61
62
62
63
63
64
64

91

S0
51

52

53

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

7

72

73

74

75

76
77

w

o W & W N mO
kbt At bt b e
a ©O O © O HMw

el d

-

rov_data
rov_ack0d
and data
rav_ack2
and_data
rev_data
rov_ackl
and data
snd ack

zov_ackd
and_data
zov_data
rov_ack3
and_data
rov_data
rov_ack2
snd_data
snd_ack

rov_acké
snd_data
rcv _data
rov_ack$
snd_data
rev _data
rev_ackd
snd_data
rcv_data
rov_ack3
snd_data
snd _ack

rcv_data
snd_data
rev data
and_data
rov_data
snd _data
rcv_data
end_data
rov_data
snd_data
snd_ack

rev_ackl
snd_data
rev_data
rov_ack3
snd data
rev_data
rev_ack2
snd_data
rev_data
rev_ackS
snd data
rov_data
rov_ackd
snd_data
rev_data
rev_ack3
snd_data
rev_data
rov_ack?
snd_data
rev_data
rev_ack$
snd_data
rev_data
rov_ack5
snd_data
rev_data
rov_ack4éd
snd_data
rov_data
rov_data
snd_data

5
66

67
(1]

68
50

(¥}
70

70
n

n
S0

72
73
18
13
74
19
74
5
20
s
S0

76
17
7
78
78
79
79
80
80
8l

82
83

84
85

85
{11
11
87
1]
12
88
89
13
89
90
24
9
92
25
92
93
26
93
94
27
94
95
96
96

92

78
79
80
81
82

83

85

87

90

91

92

93

94

95

97

98

100
101

102

103

104

108

Lo T T T)

-

-

Ou.ﬂd.

-~

-~

-

h O ~N ® Vo

o O U a W
— et Gmd e bt

)

O o U & WN
[S N W)

a r © © O

-

" © O O om

rov data
snd data
rov data
snd data
rov_data
snd data
rov data
rcv_ack0
snd data
rov _ack2
snd_data
rov _data
rev ackl
snd data
snd ack

rov_ackd
snd data
rev_data
rov _ack3
snd data
rov data
rev_ack2
snd data
snd ack

rev_acké
snd _data
TCcv data
rev ackS
snd data
rcv data
rev ackd
snd data
rov _data
rov _ack3
snd data
snd ack

rov _acks
snd data
rov data
rcev ack?
snd data
rcv _data
rov acké
asnd data
rev data
rov_ack$
snd_data
rov data
rev ackd
snd data
and ack

rev data
snd data
rcv _data
snd data
rov_data
snd data
rev data
snd_data
snd ack

rev ackl
snd data
rev data
rev_ackl
snd data
rov data
rev ack2
snd data
rov_data
rev ack$
snd data
rov _data
roev _ack4

104
105

105
106

106
81
17

107

108
18

108

109
19

109

110
20

110

34
111
112

as
112
113

36
113
114

37
114
115

38
115

81
116
116
117
117
118
118
119
119
120

121
122

123
124

124
125
11
126
127
12

93

106

107

108

109

110

11
112

113
114
115
116
117
118
119

120
121

122

123

124

125

126

127

128

129

130
13

132

Lo,

[s,

L

[s,

{10,
{9

(s,
L7
L6,
{10,

9.
[s,

(s,

(1o,
Lo,

(s,

At et el et e

127
128

128
129

24
130
131

25
131
132

26
132
133

27
133
134

45
138

46
138
136

47
136
137

48
137
138

49
138
139
140
140
141
141
142
142
143

144

145
146

146
120

147
148

148
149

149
120
17
150
151
18
151
152
19
152
153
20
153
120
k1)
154
as
154
155
36

94

133

134

138
136

137

138

139

140

141

142

143
144

145

146

147

148

149

150
151

152

153

154
155

156

157

158
159

L.

s,

(10,
o,

{8

[

(10,
{9,

L8,

[7'

(20,
e,

[.l

£7,

(10,
{9

(7]

O N o ua
ottt Gt Ak bt
a O O o0

snd data
rov _datas
zov_ack$
snd data
rgv_data
rov_ackd
snd data
snd ack

rcv_ack9
rov data
rov_ack$
snd data
rov _data
rov_ack?
snd data
rov _data
rov_acké
snd data
rov _data
rov_aock$
snd data
snd ack

rov_data
snd data
rov _data
snd data
rev _data
snd data
snd_ack

rev_ackl
snd data
rcv data
rev _ack3
snd data
rev data
rov_ack2
snd data
rov _data
rov_ack$
snd data
rov_data
rov_ack4
snd_data
rov _data
rov_ack3
snd data
rov data
rov_ack?
rcv data
rov_acké
snd_data
rov data
rov_ack$
snd data
rev _data
rev_ack4
snd data
rov _data
rov_ack$
rov _data
rev_ack?
snd data
rov_data
rov_acké
snd data
rov_data
rov ack$S
snd data
rov data
rov_ack$9
rov_data
rov_ack8
snd data

155
156
37
156
157
38
157
120
61
158
62
158
159
63
159
160
64
160
161

161
120
162
162
163
163
164
164
165

166
167

168
169

169
170
11
71
172
12
172
173
13
173
174
24
175
25
175
176
26
176
177
27
177
178
46
179
47
179
180
48
180
181
49
181
182
l
183

183

95

160

161

162

163 [

164
165
166

167

168

169

170

1im
172

173

174

175
176

177

178

179
180

181

182

183
184

185

186

{s,

L7

[101

£o,

‘ .I

t7,

(1o,
(o9,

(s,

[7'

{10,
€9,

L7

(10,
{9,

(8,

t7,

© O a9 oW
- d Gt el et
~ <& O 00

rov_data
rov_ack?
snd _data
raov data
rov_acké
snd_data
rov_data
rov_data
snd data
rov_data
snd_data
rov_data
rev_ack0
snd data
roev_ack2
snd_data
rov_data
rov_ackl
snd_data
snd_ack

zrocv_ack4
snd_data
rov_data
rov_ack3
snd data
rcv data
rov_ack2
snd data
snd ack

rcv_acké
rov data
rov_ackS
snd data
roev data
rev_ackd
snd_data
rov_data
rev_ack3
snd data
snd _ack

roev_ack?
rov _data
rov_acké
snd data
rcv_data
rov_ack$
snd data
rev data
rov_ackd
snd _data
snd ack

rov_ack$
rov_data
rov_ack?
snd_data
rocv_data
rov_acké
snd data
rov data
rov_ack$
snd data
snd_ack

rov _ack9
rocv_data
rov_ack8
snd_data
rev data
rov_ack?
snd_data
rov_data
rov_acké
snd_data
snd_ack

]

)

184

79
184
188

80
185
186
187
187
1e8
188
189

190

191
192

192
165

193
194

194
195

195
165
17
196
18
196
197
19
197
198
20
198
165
a5
199
36
199
200
37
200
201
38
201
165
62
202
63
202
203
64
203
204
65
204
165
97
205
98
205
206
99
206
207
100
207
165

96

187
188

189
190

19

192

193
194

195

196
197

198

199
200

201

202
203

204

205
206

207
208
209

210
211

212

213
214

218

[101
[9,

fes,
[s,

(s,

(10,
[’l

{8,

[1o,
[9'

(8,

(10,
{o,

(1o,
(o,

{8

10,
(o9,
{8,
[1o0,
(o9,
(s,
(o,

{s,

(1o,
[,(

(s,

0o & o

o O o9

[Py
® O o000

— S Gt et
© v oo

rcv_data
snd data
rov_data
snd data
snd ack

rov_ackl
snd data
rov_datas
rov_ack3
and data
rov_datas
rov ack2
snd data
rov_data
rov_ack$
rov _data
rev_ackd
sad data
rov data
rov_ackd
snd data
rav_data
rov_acké
rov_data
rov_ack$S
snd data
rov_data
rov_ackd
snd data
rov_data
rev_ack?
rov_data
rev_acké
and data
rov_data
rov_ack$
snd data
rcv _data
rcv_ack8
rov _data
rov_ack?
snd data
rev_data
rov_acké
snd data
rov_data
rov_ack9
rocv _data
rov_ack$
snd data
rov_data
rov ack?
snd data
rav_data
rev _data
snd data
rev _data
rov_ack0
snd data
rev_ack2
snd data
rev _data
rov_ackl
snd data
snd ack

rov_ack4d
rov_data
rocv _ack3
snd data
rov _data
rov_ack2
snd data
snd ack

208
208
209
209
210

211
212

213
214

214
215

216

12
216
217

217
218
25
219
26
219
220
27
220
221
47
222

222
223

49
223
224

78
225

79
225
226

80
226
227
117
228
118
228
229
119
229
230
231
231
232

233

234
235

235
210

236

236
237

237
210

97

216
217

218

219
220

221

222
223

224

225
226

227

228
229

230

231

232

233

234
238

236
237

238
239

240
241

242
243

244

(10,
l ’l

(20,
[e,

[8s,

(10,
e,

L8,

(3o,
s,

L e,

(1o,
(’I

{20,
fo

119,

l ,I

{10,
{o,

1o,
L,

(1o,
(s,

(10,

rov_ack$
rov _data
zav_ackd
snd data
rav _data
rov_ack3
snd data
and ack

rav_ack$
rov data
rav_ack$
snd data
rav_data
rav_ackd
asnd_data
sad ack

rov _ack?
rov_data
rov_acké
snd data
rav_data
rav_ack$
snd dats
snd_ack

rav_acks
rov _data
rev_ack?
snd data
rov _data
rov_acké
snd_data
snd ack

roev_ack9
rov_data
rov_acks
snd data
rev_data
rov_ack?
and data
and ack

rov _data
snd data
snd_ack

rov_ackl
snd data
rov_data
rev_ackl
rov_data
rov_ack2
snd data
rev_data
rov_ackd
rov_data
rov_ack3l
snd_data
rov_data
rov_ack$
rav_data
rov _ackd
snd data
rov _data
rov_acké
rov _data
rocv_ack$
snd data
rov_data
rov_ack?
rov _data
rov_acké
snd data
rov _data
rov_ack$
rov_data

|

'

18
238

238
23

260

260
261
118
262

98

243

246
247
248
249
250
251

252
253

254
255

256
257

258
259

260
261

262
263

264
265
266
267
268
269
270
271
272
273
274
275

276
271

{9 6

(10,
(9 7
{10,
{9,
1o,

= O ©oOe

[’l

[

[101
19, 2

[i0, 2
[9 3

{l0, 3

[9 4

[10, ¢
[9. 5

(10, S
[9 ¢

{io, 6
19 7

{10, 7
(9, 8
(10,10
(10, o
(10, 1
(10,
(10,
(10,
{10,
(1o,
(10,
{10,

[100
(10,

O o N 6 W e w N
[o W e)

[y

] O
J12

J10

- W - N w - L) [

rov_ack?
snd data
rov_data
rov_ack9
rov _data
rov_ackl
snd data
rov_data
rov data
rocv _ack0
end data
rov_ack?
rev_data
rov_ackl
snd data
snd ack

rov_ackl
rov_data
rov_ack2
snd_data
snd ack

rov_ack4
rov_data
rov_ackl
snd_dsta
snd_ack

rev_ack$
rov_data
rov_ack4
snd_data
snd_ack

rov_acké
rov_data
rev_ack$
snd data
snd ack

rov _ack?
rov_data
rev_acké
snd data
snd ack

rev_ack$
rov_data
rov_ack?
snd _data
snd _ack

rov_ack$
rcv _data
rov_ack$
snd data
snd_ack

snd _ack

rov_ackl
rov _data
rev_ack2
rov_data
rev_ackl
rov _data
zov_ack4
rov_datas
rov_ack$
rov data
rov_acké
rov_data
rov_ack?
rov _data
rev_ack$
rov_data
rov_ack$9
rov _data
rev_ack0
rev_ackl
snd _ack

119
262
263
163
264
164
264
265
266

267
268

268
249

269
249

270
20
270
249
37
271
as
271
249
64
272

272
249

273
100
273
249
142
274
143
274
249
188
275
189
275
249
276

277

278
13
279
27
280

28]

80
202
119
2983
164
284
209
285

276

278 (10, 2] 9 rov_ack2 ¢
end_ack 276
279 (10, 31 7 rov_ack3 20
snd_ack 276
280 [10, 4) 6 rov_ackds 38
snd_ack 276
28" 'i0, 5) S rov_ackS €8
end_ack 27¢
+2 [10, 6) 4 rov_ack6 100
end_ack 276
283 (10, 7)1 3 rov_ack? 143
snd_ack 276
284 [10, 8) 2 rov_acks 189
snd_ack 276
285 (10, 9] 1 rov_ackt 232
snd_ack 276

SUMMARY OF REACHABILITY AMALYSIS (AMALYSIS COMPLETED)

Mumber of states generated :286
Number of states analyszed :286
¥umber of deadlocks : 0

UMEXRCUTED TRAMSITIONS
ARRTAPOMR N NRE

100

APPENDIX C (Token Bus Protocol)

FSM Text File

start
number_of_machines 8
machine 1

state 0

trans rovl 1
trans get_tkl 2
state 1

trans readyl 0
state 2

trans Xmitl 3
trans pasal 0
state 3

trans moreDl 2
trans pass_tkl 0
machine 2

state O

trans rcv2 1
trans get tk2 2
state 1

trans ready2 0
state 2

trans Xmit2 3
trans pass2 0
state 3

trans moreD2 2
trans pass_tk2 0
machine 3

state 0

treas xcvld 1
trans get_tk3 2
state 1

trans readyl 0
state 2

trans Xmit3 3
trans passl 0
state 3

trans morxeD3 2
trans pass_tk3 0
sachine 4

state 0

trans revd 1
trans get_tkd4 2
state 1

trans ready4 0
state 2

trans Xmitd 3
trans pass4 O
state 3

trans moreD4 2
trans pass_tk4 0
machine S

state O

trans rov$S 1
trans get_tkS$S 2
state 1

trans ready$S 0
state 2

trans Xmit$S 3
trans pasasS 0
state 3

101

tzans moreDS 2
trans pass_tkS 0O
machine 6§

state 0

trans rové 1
trans get_tké 2
state 1

trans readyé 0
state 2

trans Xmité6 3
trans passé 0
state 3

trans moreDé 2
trans pass_tké 0
machine 7

state O

trans revl 1
trans get tk7 2
state 1

trans ready? O
state 2

trans Xmit? 3
trans pass7 0
state 3

trans moreD? 2
trans pass_tk7 0
machine 8

state 0

trans rov8 1
trans get_tk8 2
state 1

trans ready$ 0
state 2

trans Xmit8é 3
trans pass8 0
state 3

trans moreD8 2
trans pass_tk8 0O
inictial _state 0 0 000 0 0 O
finish

102

Variable Definitions (No Message in outbuf Variables)

with TEXT_I0; use TEXT_IO:

package dafinitions 1is

num_of_machines : constant := §;

k : constant := 7; -- number of rows (messages) in output buffer

type scm _transition_type is (passl, pass2,pass3, passd, passS,passé,
PassT, pass$,get_tkl, get_tk2,
get_tk3, get_| tkd, get_ eu,q-e tké,
get_tk?,get_tks, Xmitl, Xmit2, Xmit3,
Xait4, Xmit5, Xmit6, Xmit7, Xnits, moreDl,
moreD2, moreD)l, moreDd, moreD$,
-onbs,nonn‘l,-onbi pass_tkd, pass_tkS,
pass_tX6,pass_tk7,pass_tki,
pass_| ‘tkl,pass_tk2,pass_| k3,
revl revd, revl, ravé, rovl, reve,
:m,ms,uadyl ready2, ready3,
ready4, ready$, readyé, ready’, readys, unused) ;

type dummy type is range 1..255;

type t_field type is (D,T.K);

package t tiold enum_io is new enumeration_JO(t_field type):
use t_tield_enum io;”

type MEDIUM TYPE is
record
t : t_field type;
DA : Integer range 1..8;
SA : integer range 1..8;
data : character;
end record;

type input buffer type is
record
DA : integer range 0..8 :=0;
SA : integer range 0..8 :=0;
data : character := 'E';
end record;

type output buffer type is array (1..k) of MEDIUM TYPE;

type machinel_state_type is

record
next : integer := 2; --address of downstream neighbor
1 : integer := 1; -- stations own address
ctr : integer range 1..(k+l) := 1; -- counter for msssages sent
jJ : integer range 1l..k := 1; -- index for output buffer
inbuf : input buffer type: -- stores the received msssages

outbuf : output_buffer_type := ((8,2,1,'I'),(X,3,1,'I"),
(£,4,1,'1'),(R,5,1,'1"),
(£,6,1,'1'),(R,7,1,'T"'), (R, 8,1,'I")
end recorxd;

type machine2 state_type is
record
next : integer := 3; ~--address of downstream neighbor
i : integer := 2; -~ stations own address
ctr : integer range 1l.. (k+l):= 1; -~ counter for messages sent
J : integer range 1l..k := 1; -- index for output buffer
inbuf : input_buffer type: -- stores the received messages
outbuf : output_buffer type := ((R,1,2,6'I'),(E,3,2,'1"),
(£,4,2,'1"), (R,5,2,'1"),
(,6,2,'TI'),(R,7,2,'T"), (R,8,2,'T")
end record;

type machinel state_type is

record
next : integer := 4; --address of downstream neighbor
4 : integer := 3; -- stations own address

otr : integer range 1l..(k+l) := 1; -- counter for messages sent

103

J : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer type; -- stores the zeoceived messages
outbuf : output_buffer_ type := ((X,1,3,6°'I'),(R.2,3,°'1'),
(8,4,3,'1'), (R,5,3,'1"),
(,6,3,'1'),(R,7,3,'7"),(R,8,3,.'T")):
end record;

type machined_ state_type is

record

next : integer := 5; --address of downstream neighbor
i : integer := 4; -- stations own address
ctr : integer range 1l..(k+l) := 1; -- counter for msssages sent

j : integer range 1l..k := 1; -- index for output buffer
inbuf : input buffer type; -- stores the received messages
outbuf : output_buffer type := ((R,1.4,'I'),(R,2,4,'1'),(R,3,4,'1'),(K,S5,4,'1"),
(B,6,4,'1'),(R,7,4,'I"),(R,8.4,'2’));

end record;

type machineS_state_type is
record
next : integer := 6; --address of downstream neighbor
i : integer := 5; -~ stations own address
ctr : integer range 1..(k+l) := 1; -- counter for msssages sent
j : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer type; =-- stores the received messages
outbuf : output_buffer_type := ((%,1,5,'I'),(X%,2,5 'I'), (83,5 'I'), (K, 4,5 '),
(x,6,5,'1'),(R,7,5,'T"), (R,8,5,'I"')):
end recorxd;

type machineé_state_type is

record

next : integer := 7; --address of downstream neighbor
i1 : integer := 6; -- stations own address
ctr : integer range 1..(k+l) := 1; -- counter for messages sent

J : integer range 1..k = 1; -- index for output buffer
inbuf : input_buffer_type; -- stores the received messages
outbuf : output_buffer_type := ((E,1,6,'I'),(K,2,6,'1'),(R,3,6,'1"), (2,4,6,'Y"),
(,5,6,'1'),(®,7,6,'1"'),(K,8,6,'T"));

end record;

type machine7_state_type is

record
next : integer := 8; --addresas of downstream neighbor
i1 : integer := 7; -- stations own addresse
ctr : integer range 1..(k+l) := 1; -- counter for messages sent
J : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer_type; -- stores the received messages
outbuf : output_buffer type := ((%,1.7,'I'),(%,2,7,'I'),(R,3,7,'1"), (K, 4,7,'T"),

(,5.7,'1'),(R,6,7,'I"),(R,8,7,'T"));
end recoxd;

type machine8_state_type is
record
next : integer := 1; --addreas of downstream neighbor
i : integer := 8; -- stations own address
ctr : integer range 1..(k+l) := 1; -- counter for messages sent
4 : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer type; ~- stores the received messages
outbuf : output_buffer_type := ((E, 1,8, 'I'),(R,2,8,'I'), (K, 3,8,'I"), (K, 4,8, °'T"),
(,5.8,'1"), (R, 6,8,'I"),(E,7,8,'1"));
end record;
type global_ variable type is
record
MEDIUM : MEDIUM TYPE :=(T,1,2,°'N')’
end record;

end definitions;

104

Variable Definitions(One Message in outbyf Variables)

with TEXT_10; use TEXT_IO;

package definitions is

aus_of_machines : constant := 8;

k : conatant := 7; -- number of rows (messages) in output buffer

type aca_transition_type is (passl,pass2,pass3, passd, passS, passé,
pass?, pass8,get_tkl, get_ tk2,
get_tk3, get_tkd,get_tkS5, get_tké,
get_tk7,get_tks, Xmitl, Xmit2, Xmit3,
Xmit4, Xmit5, Xmit6, Xmit7, Xmit$, mozeDl,
moreD2, moreD3, moreD4d, moreDS,
moreD6,moreD7, moreDS, pass_tkd, pass_tkS,
pass_tké, pass_tk7,pass_tk§,
pass_| k1, pass " tk2, pass_| - tk3,
revl rovd, revl, rave, rovl, rovs,
roev2, rev3, readyl, ready2, ready3,
readyd, ready$, ready€, ready7, ready$, unused) ;

type dusmy type is range 1..255;

type t_field type is (D,%.K);

p.ckaq. t_ ttold enum io is new enumeration_IO(t_field type);
use ttcld enum 10,

type MEDIUM TYPE is
record
t : t_field type;
DA : integer range 1..8;
SA : integer range 1..8;
data : character;
end record;

type input_buffer_type is
record
DA : integer range 0..8 :=0;
SA : integer range 0..8 :=0;
data : character := 'E';
end record;

type output_buffer type is array (1..k) of MEDIUM TYPEK;

type machinel state _type is
record

next : integer := 2; --address of downstream neighbor

i : 4integer := 1; -- stations own address

ctr : integer range 1l..(k+l) := 1; -- counter for messages sent

4 : integer range 1l..k := 1; -- index for output buffer

inbuf : input buffer_type; -- stores the received messages

outbuf : output buffer - type := ((D,2,1,'1'), (R,3,1,'I"),
(R,4,12,'1'),(8,5,1,'1'),
(£,6,1,'1"),(R,7,2,'T'),(R,8,1,'I")

end record;

type machine2_state_type is
record
next : integer := 3; --address of downstream neighbor
1 : integer := 2; -- stations own address
ctr : integer range l..(k+l):= 1; -- counter for messages sent
3 : integer range 1l..k := 1; -- index for output buffer
inbuf : input_buffer_type; -- stores the received messages
outbuf : output buffer _type := ((D,1,2,'I'),(8,3,2,'1"),
(£,4,2,'1"), (R, 5,2,'T"),
(2,6,2,'1'),(8,7,2,'1I'),(R,8,2,°'I")
end record;

type machine3_state_type is
record
next : integer := 4; --address of downstream neighbor
i : integer := 3; -- gtations own address
ctr : integer range 1l..(k+l) ‘= 1; -- counter for messages sent

105

):

4 : integer range 1l..k := 1; -- index for output buffer
inbuf : input_buffer type; -- stores the received massages
outbuf : output_buffer_ type := ((D,1,3,'I'),(%.2,3,'X"),
(R,4,3,'1'), (B.5,3,°'2'),
(R,6,3,'I'),(R,7,3,'1'),(R,8,3,'I"));
end record;

type machined_state_type is

record

next : integer := 5; --address of downstress neighbor

1 : integer := 4; -- stations own address

otr : integer range 1..(k+l) := 1; -~ counter for messages sent

§ : integer range 1..k := 1; -- index for output buifer

inbuf : input_buffer_type: -- stores the received meassages

outbuf : output_buffer type := ((D,1,4,'I'), (R, 2,4,'1'), (2,3,4,'1'),(R.5,4,'1"),

(8,6,4,'T'),(R,7,4,'T"),(R,8,4,'T"));

end record;

type machine3_state_type is
record
next : integer := 6; --address of downstream neighbor
i : integer := 5; ~-- stations own address
ctr : integer range 1..(k+l) := 1; -- counter for messages sent
j : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer_type; -- stores the received messages
outbuf : output buffer_type := ((v,1,5,'1'),(B,2,5,'1'),(%,3,5,'X"), (K. 4,5,.'I"),
(x,6,5,'1'), (8,725, '), (8,5 '));
end record;

type machine§ state_type is
record
next : integer := 7; --address of downstream neighbor
1 : integer := €; -- stations own address
ctr : integer range 1..(k+l) := 1; -- counter for messages sent
4 : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer_type; -- stores the received messages
outbuf : output_buffer_type := ((D,1,6,'I'), (¥.2,6,'I'), (2,3,6,'1'),(K,4,6,'1").
(2,5.6,'I'),(8,7,6,'X), (8,6 '));
end record;

type machine7_state_type 1is
record
next : integer := 8; --addreas of downstream neighbor
i : integer := 7; -- stationa own address
otr : integer range 1..(k+l) := 1; -- counter for messages sent
4 : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer_type; -- stores the received messages
outbuf : output_buffer_type := ((D,1,7,'1'),(8,2,7,'1'),(®,3,7,'
?

I'),(R,4,7,'T"),
(,5,7,'1'),(B.6,7,'1'),(8,8,7,'X"))

end record;

type machine8_state_type is
record
next : integer := 1; --addreas of downstream neighbor
i : integer := 8; -- stations own address
octr : integer range 1..(k+l) := 1. -- counter for wmessages sent
§ : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer_type; -~- stores the received messages
outbuf : output_buffer_type := ((D,1,8,'I'), (R, 2,8,'I"), (8,3,8,'1'),(R,4,8,'T"),
(¢,5,8,'I'),(8,6,8,'1'),(R,7,8,'1"));
end record;
type global variable_type is
record
MEDIUM : MEDIUM TYPE :=(7,1,2,'R');
end record;

end definitions;

106

Variable Definitions
There are seven messages in outbuf variable of each machine and each machine sends
one message to the other machines in the network.

with TRXT_IO: use TRXT IO;
package definitions is
num of machines : constant := §;
k : constant := 7; ~-- number of rows (messages) in ocutput buffer
type scm_transition_type is (passl,pass2, pasad, passd, passS, passé,
pass’,pass8, get_tkl,get tk2,
get_tk3, get_| tkd, get_f tksS, get_tké,
get_tk7,get_tks, Xaitl, !-1:2 Xmit3,
Xmit4, Xmit5, Xmit6, Xait7, Xnit8, moreDl,
moreD2, moreD3, moreD4, -o:ons,
moreD6,moreD7, moreDS, pass_tk4, pass_tk5,
pass_tk€,pass_tk7,pass_tk$,
pass_tkl, pass_tk2, pass_tk3,
rovl, rovd, rovs, rove, rcvl, rovs,
rov2, rovl, readyl, ready2, ready3,
ready4d, ready5, readyé, ready?, ready$, unused) ;

type dusmy type is range 1..255;
type t_field type is (D,T.R);

package t_field_enum io is new enumeration_iO(t_field type);
use t tiold enum io,

types MEDIUM TYPR is
record
t : t_field type:;
DA : Integer range 1..8;
SA : integer range 1..8;
data : character;
end record;

type input_buffer type is
record
DA : integer range 0..8 :=0;
SA : integer range 0..8 :=0;
data : character := 'K';
end record;

type output_buffer_type is array (1..k) of MEDIUM_TYPK;

type machinel state_type is
record
next : integer := 2; --address of downstream neighbor
i : integer := 1; -- stations own address

ctr : integer range 1l..(k+l) := 1; -- counter for messages sent
jJ : integer range l..k := 1; -- index for output buffer
inbuf : input buffer type; -- stores the received messages

outbuf : outpﬁt_buftor_cypo := ((D,2,1,'T'),(D,3,1,°'1"),
(D,4,1,'1'),(D.,5,1,°'T"),
(D,6,1,'1'),(D,7,1,'I'),(D,8,1,°'I"'));
end record;

type machine2 state_type is
record
next : integer := 3; --address of downstream neighbor
1 : integer := 2; -- stations own address
ctr : integer range 1..(k+l):= 1; -- counter for messages sent
3 : integer range 1l..k := 1; -- index for output buffer
inbuf : input_buffer type; -- stores the received messages
outbuf : output | buffer _type := ((D,1,2,°'I'),(D,3,2,'1"),
(D,4,2,'1"),(D,5,2,'1"),
(D,6,2,'1'),(D,7,2,'T"),(D,8,2,'T"));
end record;

107

type machine3_state_type is
record
next : integer := ¢; ~-address of downstresm neighbor
i : integer := 3; -- astations own address
otr : integer rangs 1..(k+l1) := 1; -- counter for messages sent
J : integer range 1..k := 1; -- index for output buffer
induf : input_buffer type; -- stores the received msssages
outbuf : eutput buffer _type := ((P,1,3,'I'),(D,2,3,'I'),
(D,4,3,'1'),(D,S5,3,'1"),
{p,6,3,'1'),(D,7,3,'I'),(D,8,3,'I") });
end record;

type machined stats_type is

record

next : integer := 5; -~-address of downastream neighbor

1 : integer := 4; -- stations own address

ctr : integer range 1l..(k+l) := 1; -- counter for messages seat

J : integer range 1..k := 1; -- index for output buffer

iobuf : input buffer type; -- stores the received sesaages

outbuf : output_buffer -_type := ((D,1,4,'1'),(D,2,4,'T'),(D,3,4,'I'),(D,5,4,'T"),

(D,6,4,'1'),(D,7,4,'1'),(D,8,4,'I")):

end record;

type machine5_state_type 1s
record
next : integer := 6; --address of downstream neighbor
4 : integer := 5; -- stations own address
ctr : integer range 1..(k+l) := 1; -- counter for messages sent
J : integer range 1..k := 1; -- index for output buffer
inbuf : input buffer_type; -- stores the received sssaages
outbuf : output_buffer_ type := ((D, 1,5, 'I'"), (D, 2,5, 'I'), (D,3,5, 'I'), (D, 4,5, '),
(p,6,5,'1'),(0,7,5,'t"),(D,8,5,'I'));
end record;

type machineé_state_type is

record

next : integer := 7; --address of downstream neighbor
i : integer := 6; -- stations own address
otr : integer range 1..(k+l) := 1; -- counter for messsages sent
4 : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer_type; -- stores the received messages
outbuf : output_buffer_type := ((,1,6,'1'),(D,2,6,'1'),(D,3,6,'I"'),(D,4,6,'1"),

(p,5,6,'1'),(0,7,6,'1"'),(D,8,6,'1")).

end record;

type machine7_state_type is
record
next : integer := 8; --address of downstream neighbor
i : integer := 7; -- gtations own address
ctr : integer range 1..(k+l) := 1; -- counter for messsages sent
J : integer range 1..k := 1; -- index for output buffer
inbuf : input_buffer_type: -- stores the received messages
outbuf : output_] buffer _type := ((D,1,7,'1'),(D,2,7,'I'),(D,3, 7,'1'),(D,4,7,'1"),
(D.5, 7 '1'),(D,6,7,'1"),(D,8,7,'I"));
end record;
type machine8_state_type is
record
next : integer := 1; --address of downstream neighbor
i : integer := 8; ~-- stations own address
otr : integer range 1..(k+l) := 1; -- counter for messages sent
3 : integer range 1..k := 1; ~- index for output buffer
inbuf : input_buffer type: -- stores the received -uaq..
outbuf : outpue buffer _type := ((D,1,8,'I'),(D,2,8,'I"), (D, 3,8,'I'),(D,4,8,'I"),
(DS‘ '1'),(D,6,8,°'I'),(D,7,8,'"')).
end record;
type global variable_type is
record
MEDIUM : MEDIUM TYPR :=(7,1,2,'N');
end record;

end definitions;

108

Predicate-Action Table

separate (main)
procedure Analyze_Predicates_Machinel(local : machinel_state type;
global : globsl_varisble_type:
natural;
in out transition_stack_package.stack)

[
v :
begin
case 8 is
when 0 =>
if ((global .MEDIUN.t = D) and (global .MEDIUM.DA = local.i)) then
push(w, zavl),
end 1if;
1f ((global .MEDIUM.t = T) and (global.MEDIUM.DA = local.i)) then
push (v, get_tkl):
end if;

when 1 =>
push (v, readyl) ;
vhen 2 =>
if (local.outbuf(local.j).t /= E) then
push (w, Xmitl) ;
end if;
if (local.outbuf(local.3j).t = R) then
push (v, passl);
end if;
when 3 =>
if ((global .MEDIUM.t = E) and (local.outbuf(local.j).t /= E) and
(local.ctr <= k)) then
push (w, moreDl) ;
end if;
if ((global .MEDIUM.t = E) and { (local.outbuf(local.j).t = EK)
or (local.ctr = (k+l)))) then
push (v, pass_tkl);
end 1f;
when others =>
null;
end case;
end Analyze_Predicates_Machinel;

separate (main)
procedure Analyze_Predicates_Machine2(local : machine2_state_type’
global : global variable_type;
s : natural;
w : in out transition stack_ package.stack)

begin
case s ia
when 0 =>

if ((global .MEDIUM.t = D) and (global.MEDIUM.DA = local.i)) then
push (v, rcv2) ;

end if;

if ((global .MEDIUM.t = T) and (global.MEDIUM.DA = local.i)) then
push (w, get_tk2);

end if;

when 1 =>
push (w, ready?2) ;
when 2 =>
1f (local.outbuf(local.j).t /= E) then
push (w, Xmit2) ;
end if;
if (local.outbuf(local.j).t = E) then
push (v, pass2);
end 1if;
when 3 =>
if ((global .MEDIUM.t = E) and (local.outbuf(local.j).t /= E) and
(local.ctr <= k))then
push (v, moreD2) ;

109

is

is

end if;
if ((global .MEDIUM.t = R) and ((local.outbuf(local.j).t = B)
or {(local.ctr = (k¢l)))) then
push(w, pass_tk2);
end if;
when others =>

aull;

end case;

end Analyse_Predicates_Machine2;

separate (main)
Prooedure Analysze_Predicates_Machine3(local : machine3_state_type:
global : global_ variable_type;
8 @ ostursl;
% : in out transition stack package.stack) is

begin
case s is
when 0 =>

if ((global .MEDIUM.t = D) and (global.MEDIUM.DA = loaal.i)) tben
push (w, zcvl) ;

end if;

if ((global .MEDIUM.t = T) and (global .MEDIUM.DA = local.i)) then
push (w, get_tk3);

end if;

when 1 =>
push (w, ready3) ;
when 2 =>
if (local.outbuf(local.3j).t /= R) then
push (v, Xmit3) ;
end if;
if (local.outbuf(local.j).t = R) then
push (w, passl);
end 1f;
when 3 =>
if ((global .MEDIUM.t = E) and (local.ocutbuf(local.j).t /= B) and
{local.ctr <= k))then
push (w,moreD3) ;
end 1if;
if ((global .MEDIUM.t = K) and ((local.outbuf(local.j).t = })
or (local.ctr = (k+1)))) then
push(w, pass_tk3);
end if;
when others =>
null;
end case;
end Analyze_Predicates_Machine3;

- - > - o - - - - = - -

separate (main)
procedure Analysze Predicates_Machined (local : machined_state_type:
global : global_variable type:
s : natural;
w : in out transition_stack_package.stack) is

begin
case s is
when 0 =>

if ((global .MEDIUM.t = D) and (global.MEDIUM.DA = local.i)) then
push (w, rcvd) ;

end 1if;

if ((global .MEDIUM.t = T) and (global .MEDIUM.DA = local.i)) then
push (w, get_tkd);

end if;

when 1 =>
push (w, ready4d) ;
when 2 =>
if (local.outbuf(local.j).t /= E) then

110

push (v, Xmitd) ;
end if;
if (local.outhuf(local.j).t = E) then
push(w,passd) ;
end if;
when 3 =
if ((global .MEDIUM.t = E) and (local.outbuf(local.j).t /= R) and
(local.otr <= k))then
push (v, moreD4) ;
end 1if;
if ((global .MRDIUM.t = X) and ((local.outbuf(local.j).t = E)
or (local.ctr = (k+l)))) then
push(w, pass_tkd);
end if;
when others =>
null;
end case;

end Analyze_Predicates_Machined;

separate (main)
procedure Analyze Predicates_Machine5(local : machine5_state_type;
global : global variable type;
s : natural;
¥ : in out transition stack_package.stack)

begin
case s is
when 0 =>

if ((global .MEDIUM.t = D) and (global.MRDIUM.DA = local.i)) then
push(w, rev5)

end 1if;

if ((global .MRDIUM.t = T) and (global .MEDIUM.DA = local.i)) then
push (w, get_tk5);

end if;

vhen 1 =>
push (w, ready5) ;
when 2 =>
if (local.outbuf(local.j).t /= E) then
push (v, XmitS) ;
end if;
if (local.outbuf(local.j).t = E) then
push(w, passS) ;
end if;
when 3 =>
if ((global .MEDIUM.t = R) and (local.outbuf(local.j).t /= E) and
(local.ctr <= k))then
push (v, moreDdS) ;
end if;
if ((global .MEDIUM.t = B) and ((local.outbuf(local.j).t = EK)
or (local.ctr = (k+l)))) then
push(w, pass_tk5);
end if;
when others =>
null;
end case;

end Aknalyze_Predicates Machine$;

- - - - - -~ - - - - - - = -

separate (main)
procedure Analyze Predicates_Machine6(local : machineé_state _type:
global : global_variable_type;
a : natural;
w : in out transition_stack_package.stack)

111

i

is

begin
case s 1is
when 0 =>
if ((global .MEDIUM.t = D) and (global .MEDIUM.DA = local.i)) then
push (w, rové) ;
and if;
if ((global .MEDIUM.t = T) and (global.MEDIUM.DA = local.i)) thea
push (w, get_tk6);
end if;

whean 1 =>
push (v, readyé) ;
when 2 =>
if (local.outbuf(local.j).t /= E) then
push (w, Xaité) ;
end 1£;
if (local.outbuf(local.j).t = R) then
push (w, pasaé) ;
end 1if;
when 3 =>
if ((global .MEDIUM.t = E) and (local.outbuf(locsl.j).t /= B) and
(local.otr <= k))then
push (w, moreD6) ;
end if;
if ((global .MEDIUM.t = E) and ((local.outbuf(local.j).t = E)
or (local.ctr = (k+l)))) then
push (w, pass_tk§);
end if;
when others =>
aull;
end case;

end Analysze_Predicates_Machineé;

separate (main)
procedurs Analyze Predicates_Machine7(local : machine7_state_type;
global : global_variable_type:
s : natural;
w : in out transition_stack_package.stack)

begin
case s is
when 0 =>
if ((global .MEDIUM.t = D) and (global .MEDIUM.DA = local.i)) tben
push(w, revl);
end if;
if ((global .MEDIUM.t = T) and (global .MEDIUM.DA = local.i)) then
push (v, get_tk7) ;
end if;

when 1 =>
push (w, ready?) ;
when 2 =>
if (local.outbuf(local.y).t /= R) then
push (w, Xmit7) ;
end 1f;
if (local.outbuf(local.j).t = R) then
push (v, pass?);
end if;
when 3 =>
if ((global .MRDIUM.t = R) and (local.outbuf(local.j).t /= R) and
(local.ctr <= k))then
push (v, moreD?) ;
end 1if;
if ((global .MEDIUM.t = B) and ((local.outbuf(local.j).t = E)
or (local.ctr = (k+l))))} then
push(w, pass_tk7);
end if;
when othexrs =>

112

is

null;
end case;

end Analyze_Predicates_Machine?;

separate (main)
procedure Analyze_Predicates_Machine$(local : machine$_state type;
global : global_variable_type:
8 : Mtu:;l'
¥ : in out transition_stack package.stack) is

begin
case » is
when 0 =>

1f ((global .MEDIUM.t = D) and (global .MEDIUN.DA = local.i)) then
push(w, rcve) ;

end 1if;

1f ((global .MEDIUM.t = T) and (global .MEDIUM.DA = local.i)) then
push (v, get_tk8);

end if;

when 1 =>
push (v, ready8) ;
when 2 =>
if (local.outbuf(local.j).t /= E) then
push(w, Xmit8) ;
ond 1if;
if (local.outbuf(local.j).t = E) then
push (w, pasas8) ;
end 1if;
wvhen 3 =>
if ((global .MEDIUM.t = E) and (local.outbuf(local.j).t /= R) and
(local.ctr <= k))then
push (v, moreD8) ;
end 1if;
1f ((global .MEDIUM.t = E) and { (local.outbuf(local.j).t = E)
or (local.ctr = (k+l1l)))) then
push(w, pass_tk8);
end 1if;
when others =>
null;
ond case;

end Analyze Predicates_Machine8;

separate (main)
procedure Action { in_system_state : in ocut Gstate_record type:;
in transition : in out scm_ transition typ.
out _system_state : in out Gatatc record type) is

begin
case in_transition is
when rcvl =>
cut_systes_state.machinel state.inbuf.SA
i=in_system_ state. global_variables.MEDIUM.SA;
out_system state. ucbiml state.inbuf.data
i=in system state. global _variables .MEDIUM.data;
when rcv2 =>
out_system_state.machine2 state.inbuf.SA
Tmin _system state. global_variables .MEDIUM.SA;
out_system state. nchimz state.inbuf.data
i=in_system state. global_variables .MEDIUM.data;
when rcv3 =>
out_systes_state.machine3_state.inbuf.SA
Tmin _system state. global_ variables.MEDIUM.SA;
out_system_state. nchim3 state.inbuf.data

113

i=in_system_state.global_variables.MEDIUM.data;
when rcvd =>
out_system_state.machined_state.inbuf.SA
Tmin _system | state. global variables.MEDIUM.SA;
out_system_ state.machined _state. inbuf.date
T=in _system_ state. global_variables.MEDIUM.data;
when rovs =>
out_system state.machineS_state.inbuf.sA
Twin _systea state.global variables.MEDIUM.SA;
out_system_state.machine$_state.inbuf.data
Tmin _system_ .tneo.qlcbu. variables .MEDIUM.data;
when rové =>
out_system_state.machineé_state.inbuf.SA
Twin _system state. global variables.MEDIUM.SA;
out_system_state.machineé_state.inbuf.data
Tmin _system_ state. global variables.MEDIUM.data;
when rov? =>
out_system state.machine?_state.inbuf.SA
Twin |_systea -tuto.glabn. variables .MEDIUM.S8A;
out_system_state.machine?_state.inbuf.data
Tmin _systes_ state. global_variables.MEDIUM.data;
when rové=>
out_system_state.machine8_state.inbuf.SA
i=min_system state.global variables.MEDIUM.SA;
out_system_state.machined_state.inbuf.data
Tmin _system .tato.qlobul variables .MEDIUM.data;

when readyl | ready2 | ready3 |readyd|readyS|readyé|ready7|readys =>
out_system state.global variables.MEDIUM.t := K ;

whan get_tkl =>
out -y-eo- state.global_variables .MEDIUM.t := R ;
out ay-e- state. nchl.ml state.ctr := 1;
when gnt tk2 =>
out_system state.global_ variables .MEDIUM.t := B ;
out_system_state .machine2 state.ctr := 1;
when get tk3 =>
out_system_state.global_ variables .MEDIUM.t :=E ;
out_system_state.machinel_state.ctr := 1;
when qot thé =>
out -yoe- state.global_variables .MEDIUM.t :=E ;
out -y-t- state. nchim4 state.ctr := 1;
when qot tkS =>
out_system state.global_variables.)EDIUN.t := B ;
out_ lyot- state. nchims state.ctr := 1;
when qot tke =>
out_system_state.global_variables.MEDIUM.t :=E ;
out cy-t- state. -aohino‘ state.ctr := 1;
when get | tk7 =>
out ny-f..- state.global variables MEDIUM.t := R ;
out ly-c- state. nchim? state.ctr := 1;
when q.\: tke =>
out -y-t- state.global_variables .MEDIUM.t := B ;
out_system state. nchl.ml state.ctr := 1;

when passl | pass_tkl =>
out_system state.global variables.MEDIUM.t := T;
out ly-to. state. global variables .MEDIUM.DA
i= in system state.machinel_state.next;
out_system_state.global_ variables .MEDIUM.data := 'E';
out_system state. qlob.l. variables .MEDIUN.SA
= 4in -y.eo- state.machinel_state.i’
when pass2 | pass_tk2 =>
out_system_ state.global_ variables.MEDIUN.t := T;
out_ -yot- state. ql.obal variables .MEDIUM.DA
i= in system state.machine2 state.next;
out_system state. qlobn. variables .MEDIUM.dats := ‘'E';
out_system_state. qlobal variables .MEDIUM.SA
= in lyct.cn state.machine? state.i;
when passl | pass_tk3 >
out_system state.global_ variables.MEDIUM.t := T;

114

sut_system_state.global_variables.MEDIUM.DA
:= in system state.machine3 state.next;
out_system_state.global variables.MEDIUM.data := 'B';
out_system state. qlobal variables .MEDIUM.SA
‘= in system state.machine3_state.i;
when passd | pass_tkd =>
out_system -tato.globnl variables .MEDIUMN.t := ¥;
out_system_state. qlobal variables.MEDIUM.DA
= in cylt- state.machined_state.next;
out_system state. qlobnl variables .MEDIUM.data := 'B';
out_ -y-t.- state. qlobul variables .MEDIUN.SA
= 4in lyot- state.machined_state.i;
when pass5 | pass_tk$S =>
out_system lt.c..qlebnl variables.MRDIUM.t := %;
out_ _systea_ . state. qlobal variables .MEDIUM.DA
= 4in lylt- state.machineS_state.next;
out_system state. q:l.obal variables.MEDIUM.data := 'E';
out -yoto- state. qlob.l. variables.MEDIUNM.SA
= in ly-t- state.machineS_state.i;
when passé | pass_tké =>
out_system ltntc.qlobal variables.MEDIUN.t := T;
out_ ,_systes_ ,_state. qlob.l variables.MEDIUM.DA
:= in -yoto- state.machineé_state.next;
out_system state. qlobal variables.MEDIUM.data := 'B';
out .yntu state. qlob.l variables .MEDIUM.SA
:= 4in .yct- state.machineé_state.i;
when pass7 | pass_tk7 =>
out_system_: state. global variables.MEDIUM.t := T;
out_system state. globu. variables .MEDIUM.DA
= in lyltu state.machine7_state.next;
out_system_state. qlobnl variables .MEDIUM.data := 'R';
out_ _system _state. qlobnl variables .MEDIUM.SA
:= in system state.machine7_state.i;
when pass8 | pass_tk8 =>
out_system | state. global variables.MEDIUM.t := T;
out .y-:.- state. ql.obal variables .MEDIUM.DA
= in oyltu state.machine8_state.next;
out_system state. global variables .MEDIUNK.data := 'E';
out_ nyntu state. qlobnl variables .MEDIUNM.SA
= in_system_state.machine8_state.i;

when Xmitl =>
out_system state.global variables.MEDIUM
:m in_system state.machinel state.outbuf (in_system state.machinel state. j),
out_system state. machinel_ atate.outbuf (in _system_state.machinel_: state. J).t = R;
out ay-tu state. -achinol state.ctr
= (in -yltn state.machinel state._ctr mod 8) + 1;
out_system_state.machinel state.)
i= (in_system state.machinel state.j mod 7) + 1;
when Xait2 =>
out_system _state.global variables.MEDIUM
:= in_system state. nchmz state.outbuf (in_system_state.machine2_state.3);
out_system state.machine2 state.outbuf {(in_system_ state. machine2_ | state. 3).t ;= E;
out -yotu atate.machine2_ state.ctr
= (in oy.t.- state.machine2_state.ctr mod 8) + 1;
out_system state. -Achimz state.)
= (in .yltc- state .machine?_state.j mod 7) + 1;
when Xmit3 =>
out_system state.global_variables.MERDIUM
:= in systeam_state. machine3 _state.outbuf (in_system_state.machine3d_state.j);
out uyot‘- state.machine3_ state. outbuf (in_system state.machine3d_ state. j).t = R;
out oy-t- state.machine3 n.ato otr
:= (in lyctu state.machinel_state.ctr mod 8) + 1;
out_system state. -ncbiml state.3
= (in 'yltn state.machined_state.j mod 7) + 1;
vhen Xait4 =>
out_system state.global_variables.MEDIUM
i= in_system state.machined_state.outbuf (in_system state.machined_state.}):
out_system state.machined_state.outbuf (in_system state.machined_state.j).t := EK;
ocut_system_state.machined_state.ctr
= (in_system state.machined_ state.ctr mod 8) + 1;

115

out_system state.machined_state.j
= (in_system state.machined_state.j mod 7) + 1;
when Xmit5 =>
out_system_state.global_variables.MEDIUM
:= in_system_state. nchims stata.outbuf (in_system state.machine$ lt.to.j) ;
out_system_state.machine5_state.outbuf(in _system | state. machine$_: state.j) .t := E;
out lyﬂ:- state.machine$ -tato.ctr
‘= (in lynt..- state.machineS_state.ctr mod 8) + 1;
out_system state.machine$ ltnto.j
tm (in_system_state.machine5 _state.j mod 7) + 1;
when Xmité =>
out_system state.global variables.MEDIUM
im in -y-tu state. nchino‘ state.outbuf (in_systeam_state.machineé_state.));
out_system state.machineé_| state.outbuf (in lynta state. machineé_state.j) .t := K;
out lylt‘- state. machine6_ state.ctr
= (1n__-y-e-_ltnto.nch!.m‘__lt.to.ctz mod 8) + 1;
out_system state.machineé_state.]
‘= (in_system_state.machineé_state.j mod 7) + 1;
when Xmit7 =>
out_system state.global variables.MEDIUM
:= in _system_state. sachine? _state.outbuf (in_system state.machine7_state.j);
out_system state.machine? ltnto.cut.but (in_system_| otato.nchino‘l state. j).t = K;
out_system_ state. machine?_ state.ctr
H (1n_oy-tcn_ltnto.nchim'l_.tato.ctr mod 8) + 1;
out_system state.machine?_state.)
= (in_system state.machine?_state.j mod 7) + 1;
when Xmit8 =>
out_system state.global variables.MEDIUM
= in_system state. nchima state.outbuf(in_system_state.machine8_state.j);
out_system state.machine8_ state.outbuf (in oyntu state.machines -tlto.j) .t = E;
out -yotu state.machine8_ state.ctr
1= (in lylt.- state. ucbims state.ctr mod 8) + 1;
out_system state. machines _state.)
= {in oylt.- state.machine8 state.j mod 7) + 1;
when moreD1 | moreD2 | moreD3|moreD4 |[moreDS|moreDé |moreD7 |moreD8 =>
null;
when others =>
put ("Error in action procedure®);
end case;
end Action;

116

Output Format

separate (main)
procedure output_Gtuple (tuple : in out Gstate_record type) is
begin
if print_header then
new_line(2);
set_col(7);
put_line("ml,m2,m3, m4, a5, u6,m7, w8, MEDIUN.t, MEDIUM.DA, MEDIUM. SA, MEDIUM.data") ;
Print_header := false;

.1;:: (& [:& integer'image (tuple.machine_state(l)))’
;“u: ::h’at:)q;z 'image (tuple.machine_state(2)))/
;:: : “a.&t:‘);iz ' image (tuple.machine_state(3)));
2: :' u':e:;:: 'image (tuple .machine_state(4))):
;:: 11'*:;:' image (tuple.machine_state(S)))
:: :-u'ato)gi: 'image (tuple.machine_state(6)));
:“n: : -1-'1:?;:: 'image (tuple .machine_state (7)))
ﬁ: ::Lx’xe:)gir ‘image (tuple.machine_state(8))).
:2;1‘:1&_:;:&_19 .put (tuple.global_variables.MEDIUM.t, set => upper_case):.
2: :Euin:).;lobal.va:ubhl .MEDIUM.DA, width => 1);
g: :t\u':lo).;l.obal_vaziabh- -MEDIUM.SA, width => 1);
ﬁ: ::\u’)l:, ;lobal_vaziablon .MEDIUM.data);

I

end output_Gtuple;

117

Program Output (No Message in outbuf Variable)
REACHABILITY AMALYSIS of :tbS.som
SPECIFICATION

| Machine 1 State Transitions |

| Prom To Transition

rovl
get tkl
readyl
xmitl
passl
wmoredl
pass_tkl

WwNuN+EOoO
oONOWONK

{
I
(
l
I
1
|

| Machine 2 State
|

Transitions |

To Transition

N
]
i

rov2
get_tk2
ready2
xmit2

WwNNhO=EOO
| o = ———— —
ONOWONKM

| Machine 3 State

Transitions |

-

To Transition

-

| FProm

revd
get_tk3
ready3
amit3
pasal

|
|
|
|
|
|
| mored3

WWwNNHOO
ONOWONK

pass_tk3

-

-

Transitions |

- - -

» W N (-]
-

-~

o © o o

e ® 9 o

~

© 0 0 0 o © © 0 o O N © o o

o © o0 © o o

-~

| Machine 6 State Transitions |

| Prom | To | Transition |

- -

rové [}
get tké |
readyé {
amité |
passé |
moredé]
pass_tké |

ONOWONK

| Machine 7 State Transitions |

| From | To | ZTransition |
| zev? |
| get tk7 |
| ready? [
| somit? |
| |
| |
| |

pass?
mored?

| Yzom | To | Transition |

revs |
get_tks |
readys {
xmit® |
pass8)

|

|

| o o ———
WWwNoNHOO I
ONOWONM

SYSTRM REACHABILITY GRAPH

. 0,0, 0,0, 0,0)0 get_tkl 1
., 0,0, 0 0,0 010 passl 2
, 0,0, 0,0, 0,01]1 get_tk2 3
, 0,0,0,0 0,010 pass2 4
., 0,0, 0,0 0 0)2 get_tk3 5
.2, 0,0,0, 0 01]0 passl 6
., 0,0, 0,0, 0,0)]3 get_tkd 7
.0, 2,0, 0,0,0)])0 pass4 8
., 0,0, 00, 0 01)4 get_tkS 9
, 0,0, 2,0,0 030 pass$S 10
., 0,0, 0,0, 0, 0)]85 get_tké 11
,0,0,0, 2, 0,0)0 passé 12
.0,0,0,0 0 0)6 get_tx? 13
, 0,0 0,0, 2,010 pass? 14

14 (0, 0,0, 0,0,0,0,0)7

isto, o0 o0,

0,0, 0,0 2)0

get_tks 15

passt 0

SUMMARY OF REACHABILITY AMALYSIS (AMALYSIS COMPLRTRD)

Wumber of states generated :16

Number of states analysed :16

Number of deadlocks : 0

UMNRXECUTED TRANSITIONS

| Machine 1 Unexscuted Transitions |

| From | To | Unexecuted Transition |
} 0 [-) rovl |
| 1 | © | readyl |
| 2 | 3] xmitl |
{ 3 i 2 | moredl |
| 3 { O | pass_tkl |

{ Machine 2 Unexecuted Transitions]

- - = = -

1 { rovl I
1] I ready3 1
3 | xmit3 |
2 | mored3 |
] I pass_tk3 [}

- - - = - - - - - - -

4 Unexscuted Transitions |

| Unexecuted Transition |

moredd

I ONWO M
o
-

- - - - " - - - - - - -

Machine 6 Unexescuted Transitions

-y
1]
]

To

| Unexecuted Transition

WWwho~o

ONWOM

|
|
|
{
|

7 Unexecuted Transitions

| Prom

To

| Unexecuted Transition

ONWO K

rov?
ready?
xmit?

- - - = = = O o

8 Unexecuted Transitions

-

| Unexecuted Transition

ONWO KM

rcv8
ready8
xmit8
moreds
pass_tk8

121

© ® 9 & U» A W N = O

R I I R~ R S R
®O U & W N M O

17
18
1%
20
21
22
23
24
25
26
27
28
29
30
3
32
33

- -~

- - -~

HOOO_OPOO

-

Program Qutput (One Message in outbyf Variable)

SYSTEM RRACHABILITY GRAPRH

0, 0, 0,

o,
o,
1,
o,
o,
2,
3,
3,
3,
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
0,

[

(-2 - o O
< ~ ~ - « ~

-

-

o o © 0 o © o o

-

ol

- - - -

-

- -~ ~

Ww W W N o O O O o o

o o0 o o
-~ ~ - - - - - By - - ~

~

- - - - ~

© © © © 0o o o0 o o o o o o o

e

0.
o,
o,
o,
o,
o,
0,

0,

~ ~ ~

-~ ~ - ~

o 0 0 © 0 O O O W W

o
- -

(=
~

o,

ol
.
’
’
’
.

o
0

°

°

0

o

o

o,
o,
e,
e,
o,
o,
o,
o,
0
0
0
0
0
2
3
3
3

[3

0O W W w N O 0 © O 0 0o o o o o

’

.

’

r

e

-

o © o o o

-

o,
0,
0,
o,
o,
0,

-~

~

-

~

~

-

~

0,01310

%]
]

©

- e bt e b e et Gt el
©c O O & » O O O W W

o 0 O © 0 0o 0o © © © © 0 0 0 o o 6 o 6 © o o0 o o0 o o o o o o o
—

[e P e N e

o © N +# O 0 0 = = o o

o6 = O O O u

© o o

get _tkl
xmitl
rev2
ready?
pass_tkl
get_tk2
xmit2
rovl
readyl
pass_tk2
get_tk3
mit3
rovl
readyl
pass_tk3
get_tk4
xmit4
revl
readyl
pass_tkd
get_tkS5
xmit$s
raevl
readyl
paas_tkSs
get_tké
xmité
revl
readyl
pass_tké
get_tk7
xmit?
revl

readyl

122

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

34
as
36
37
38
39

-~

-

OHPOOO

0, 0, 0,0,0, 3 0)]1 pass_tk? 35
0, 0,0, 0, 0,0 0] 7 get_tk8 36
0, 0,0,0,0,0,2)0 xmits 37
0, 0, 0, 0,0 0, 3]0 rov1 3s
0, 0,0, 0,0,0, 3]0 readyl 39
0,0, 0,00, 0, 3]1 pass_tk8 O

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLETED)

Number of states generated :40
Number of states analyzed :40
Number of deadlocks : 0

UMEXECUTED TRANSITIONS

| Machine 1 Unexscuted Transitions |

| From | To | Unexecuted Transition |
| 2 |1 0 | passl |
I3 1 2 | moredl [

{ Machine 2 Unexecuted Transitions {

| From | To | Unexecuted Transition |
| 2 1 o | pass2 |
13 1 2 | mored2 [

| Machine 3 Unexecuted Transitions }

{ Yrom | To | Unexecuted Transition |

| 0 | 1 i revd i
| 1 | O | ready3 |
I 2 1 0 | pass3 |
| 3 | 2 | mored3 |

| Machine 4 Unexecuted Transitions |

| From | To | Unexecuted Transition |
I o 1 | rovd i
I 1 |1 o | ready4 1
I 2 1 0 | passd |
13 12 | moredd 1

| From | To | Unexscuted Transition |

| 0 1 1 | revs |

I 1 | o | ready5 |

| 2 | O | passs |

1 3 1 2 | moredS |
123

| Msochine € Unexecuted Transitions 1

| Prom | To | Unexecuted Transition |

{ 0 | 1 | rové |
| 1 | o } readyé)
| 2] © | passé |
[} 3 | 2 | moredé I

| Machine 7 Unexecuted Transitions)

| From | To | Unexecuted Transition |

| 0 | 1 | rev? |
| 1 {| O [} ready? 1
[} 2 1 0 | pass?]
I 3 | 2 { mored? |

{ Machine 8 Unexscuted Transitions]

| From | To | Unexacuted Transition |

§ 0 I 1 | revs |

| 1 [] readys I

| 2 { o { pass8 {

| 3 | 2] moreds I
124

Program Qutput (More Than One Message in outbuf Variable)

SYSTEM REACEABILITY GRAPH

0f{o, 0, 0 0,0, 0,0 0] 0 get_tkl 1l
1[2 0,0,0,0, 0,0, 0)0 xmitl 2
2[3,0,00,0,0 0, 0] 0 rxov2 3
3(3 1,0,0,0,0, 0, 0] 0 ready2 4
43,0, 0,0 0, 0,0, 0)1 moredl 1

SUMMARY OF REACHABILITY ANALYSIS (ANALYSIS COMPLRTED)

- > - i~ —— . - - - - - - - -

Number of states generated :$
Number of states analyzed :5
¥umber of deadlocks : 0

UREXECUTRED TRANSITIONS

- = - " - - -

| Prom | To | Unexecuted Transition |
I 0 1 1 | revl |
i 1 1 0o | readyl)
I 2 | 0o | passl I
|1 3 i o | pass_tkl |

- - - - - ———

To | Unexecuted Transition |

2 | get_tk2 I
3 | xmit2 |
0 | pass2 |
2 | |
0 | |

- - - - - -

| rev3 |
| get_tk3 |
{ ready3 |
| amit3 |
| pass3 |
| mored3d |
| pass_tk3 |

125

Machine 4 Unexacuted Transitions 1

Fxom | To | Unemscuted Transition |

rovd]
get_tkd |
ready4 |
-witd 1
pansd {
moredd |
pass_tkd |

- - - -

ONOWONKM

| revs |
| get_tk5 |
{ ready$ |
| xmit5)
| |
i i
| |

- e e = - - - - -

- e e - - - -

- - - - - -

- = - - - - - - -

| Machine 7 Unexscuted Transitions |

| Prom | To | Unexecuted Transition |
| zov? |
| get_tk?]
{ ready? |
| xmit? i
| pass? }
| mored? |
| pass_tk? [

| Machine 8 Unexecuted Transitions]

- - - - -

| rovl |
| get_tks]
| readys |
| xmits]
| passt i
I moreds |
| pass_tks 1

------ - - - - - -

126

Program Output (Global Reachability Analysis)

There are seven messages in outbuf variable of each machine.

REACHABILITY AMALYSIS of :tb8.som
SPRCIFICATION

| Machine 1 State Transitions |

| rom | To | Transition |

ONOWONKM
[\
-

pass_tkl

| Machine 2 State Transitions |

| From | To | Transition |
rova |
get_tk2 |
ready2 !
xmit2 I
1
|
|

pass2

[P ——
WWNMNHOO
[P ——

| Machine 3 State Transitions |

|

| get tk3

{ ready3

] xmit3

| pass3

| mored3

| pass_tk3

- - - - - - - - -

| Machine 5 State Transitions |

| Prom | To | Transition |

| Machine 6 State Transitions |

- - - - - - -

Transition

To

| From

- - - - - - - -

—— i ————

| Machine 7 State Transitions |

| Trom

Transition

To

——— e a———

- - - - - - -

| Machine 8 State Transitions |

-

Transition

To |

| From

REACHABILITY GRAPH

(ml,m2,23,m4, 05, m6, m7, 08, MEDIUM. ¢, MEDIUN.DA, MEDIUNM. SA, MEDIUM . data]

N L]
[} Kal -t -
3m m Mt wt wt
¥ mem.m L
(e lemlel e lalele X Y ol olelelal ol ool ol o ol Nl R ol o R el o]
OO 08 %0 0t 0=t 00 et e A MMM
NG R e e Rl N R R R R e E e K E e N e B R e R Ko N Ko R L L R K N]
L L LEL LY. AR A A T NG R A A N A N N N X N N
a« % & 4 A " & o, 3 W S B A A" W A W A R OS RM S W s s AN e 40w
MMOQOMMOaOMMAOMMOAMMAOMMAAMNMAOAOM

P N T T T S S A W VR S N ST S YL ST ST S Y

-X-E-N-N-N-R-N-N-N-N-N-N-N-N-N-N-N-N_-N-N-N-N-¥-N-N-N-N K-N.]

P N T T T T T T T T N AT A N N ST SR AR NN U ST U ST S S S

000000000 UDOO0ROCO0O000O00O00O0MO0000O00QO

P I T T T T T T T T O O O S R e

000000000 VOO0000000OMO0C0O0000C0OOCO

P T L T T T S N N O O L SN Y

0000000000000 00MOO0ODO0O00O0O00O00O000O

T S T T O R “ e & & e

[-N-N-N-N-N-N-N-N-N-N-N N-N-N-N-N-N-N-N-N-N-N-N-E-N-N- NN

L T S

[-N-N-N-N-N-N-FoN-N-N-N-N- NN NN NN~ N -

O N T S T L R Sy O SR S

L T N N T S T L O e

[-X-N-N o N-N-N-N-N-N-N-N-N-N-N-R-N-N-N-N-N-N-N-R-R-N- NN

L Y L N L L L

ONMOAOANNMHONONOANNMOMNMNONNAMNMANNMMND

O R S e e e e Yl L T)

:::::::

Ot NMNPTNVEREDRAROHNMNMPNOEOOAONNMTNOGO
Mttt A Al T NNNNNNNNNN

128

R L R P P P TR P PR L P Y P I T
o~ L]

L TR L T LT LT LIV - L P T PR L P - DS - P PO Lo S RS DU L

:mMm:smwg.uwemumgcmwemuwgmu“namuwam“wemum:mmwg ¢§32: mwcm«unc §Exegizegize

BRI IRt iais i i i il

’]]]l]]1.)1]]]]]]

B =0 0 0 0 0 0 0 e e e e e 0 et R g B e et et e et b e i e 0 e 0 B e

D T T N . T T T T . T T T S S N O . T N L T e R L N

FANNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOIOOMONNMNMNMMNMNMNMNMNNNNMNNNMNNMNMITPPTTIITPIIrPevreY

L N N T S S T T T S N T T O T S T T T L
NAHAAd AN NPT I TPNNNINOOOIOE N0 MN AN iNNNNTPPLPPTNNNNOVOOO OO PTRARMANNNNMMOMmMN

L N T S S T S T T T N N . T T N N N S N O T S N

MoaoMMOAOMMOOMMAAMMOANMAONMNAAMBMMGAONMNAOQAMMOAOMMNMOOMMAQAQAMNMMAAMMAAMNMKQOMMAAMNMAQMMA

L L T T T S T N N N o N N N T e T T L I N T T O I

-x-¥-¥-¥-¥-X-N-N-§-N-N-¥-N- NN -N-N-N-R-N-N-N-N-N-N- RO NN -N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-RN-N-N- NN - - - - - - -

L N T N o . T T T Y N N O S T N N . T T T N L L T)

0000000000000 00O00O0000OHO00000000000000000000O0O000000O0WMOO0O00000000000000O00O0OOO

L N . T T N N N N N T T T S N . T T S N T T e O I T T UL T N T

0000000000000 00000HO000000000000000000000O00LO0O0O0HOO0O0O0O00DO000O0O0O0O0O0O0O0O0OOOOOODO

L . T T o O N S N S N N N N T T T T T T O S L T I L e e L

QO0O000O00O0O0LO00O0OHOOO0O0O00O0OO0OOO0O0OODVO0O0000CO0OOO0OMHODO000O0O00O0CO00O0OOO0O0DOOOOOOO0OOO

L T T T T S N S N S T T N N - T S N L L T S N L e R

0000000000 HOOOOO0O0O0O0O00O0RCONROO0OO0000000OOOHOODOODODOODOOOOOOCOCOROONMMMNMNMMNNMMMN®

L N N o N N N T T N T I T T I R N N L e e L

Q00000 HOOOOODOOOOO0OOO0O0O0OOOOOONMMAMNMMANMMNMNNMMMANMMNONEMMNONMMMOOOO0O000000O0~NOO0O

S . T T T S N T T T T T T T T T S I L T e L R

NMOOMNMOONONANNMNONONNMNONMNIOONNMNMNMMNOO0O00000MOO0000000000000000000O0000000ONODO00000O00

L . T N N N N N L T T . T T N . T T I N L e L N

OOMOOOO0OO0O00ODO00O0O0O0O000LODOOOOOOHOOO0000O0CO0O0NO0O0O0O00O00O0ROOOO00RLOOHMODOOODODOOROOC

129

345‘1.90123‘567.901234561090123456709012345‘1l!01234561.!01234“61.90123!

00000 Attt - ~ eveowvee A Y YT I nLAS

SRR bbb bRl LR L R R R R R b bR R R R LR L R A A R R R R R E R R R -

- o

o "] M

- v e tu 2 (o 7 Nk -9 9 L] L X] ne ~e ey
-] n n wn o "] w o U] U] -

Wﬁtmm t7m mw. tl ﬁmm tsmwtmw tiwwtmw thLJtl it m it it WMCMWMtMWMtMW%

um mm um it mm §id mm:m..u [wwm:mm:mm:mm it :m..:m L

S L PN s e e Y P S PR T 6 g ey 3 O ey) ey 8 ey Py S T Y gy ey P ey P e F P ey e P e 0 1 T Py gy ey) PV 0y 4 e T ey g Y D 08 0 PSP e) 6 0 0 0 N E e ey
IIIIIIIIIIIIII“IIIIIIIIIIIIIIIIIIIIIIIIIxI‘.IIIII:IIIIII:IIIIIIIIIIIIII
L I T T T T N S . T T T e S N T T e O N L L N T T I N A
COOC PP IVUIP T CQREIPNININVLVNIVINIDVIIVVINVNNINVVNNVIINNOYVOVYVVVOVOVVOVOVVVYWOYVVVWOVOYVYYY
L T T T T S S T S A N T T S T T T . R S S TN
BNV OYOr NNl rdNNNNNTMNMIMNPP TRV rrMHANNNNNANOAYTTP I AN 0ae
L . T T T T I A . T T T S I T . T T T T O T L I R I N L L L A
OMMAOAMMAOAMNAAMHEMAANMAAQANNOAMNMRAAMMOAOMMNOOMMAONHMNOOMNMMAQAMMAAMNMAAMMAAMNMAOMMAAN

L T O S T T e O N L T I e T T T O S e I O L e N e N T O L N L L B)

000000000009 H0000000000000000000000000C0NOHO000000000000000000000000000O

D LT T O I L T . T T e T T T S N T T R S N e T T T R e N N L I e L I .- =

-X-X-X-F-F-N-F-F-N-R-F-¥ XX -N-N-¥-N-N-F-N-N-N-N-N-N-N-N-N.-N-N-N-N-N-N-IN-N-N-N.-N-N-N-N-N-N-N-N-N-N-N-R-N-N-N-R-N-N-R-N-R-N-N-N- R R-N-R-- N

L . T T T T S S N e T T T T N R . T T T S N L T R e N T T T I

0000 MOOO0OO0O0O00000000000000AVOOC0OOMHO00000O0COONMMMNMMAMNNMMNMNMNNNMNIAANNTNNNMNAM

N . T T T T N N . T S N O S T I L T I e e LT L L I e

HO0000O0O0O0OO0O0OCONMAMMNMNMANNNANNMNNMNNMNMOINNNINNNMIMOOTO00000000O0OO00OOO0O0ROOODO00000O

D . T T T T S N N . T T L T T T T T I O L L O I A - .

MO NNAONNIOOINMNMOIMOO0O00000000000O0O0MHOO00000000000000000000000O00ONO00000000000O

L . T T S . T T T N N T T T O - T T S R D L T T T U S L S Y

X - Y- X-¥-N-N-N N-N-N-N-N-¥-N-N-N-N-N-N-F-N-N-E-N_N-N-N-N-N.¥-N-N-¥_N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- NN N-N-N-R-N_N-N- NN -

L O T T T T T T T S A T T S T S S N S S S L T T L T T S N R T U R S R B S B T Y

-X-X-X-X-F-R-X-N-¥-N-N-¥-N-F-N-N-¥-N-¥-N- N N-NoN-N-N-N-N-N-N-N-N-N-R-N- NN NN NN)

D . T T N . T T T S O SR Y L T T T T O A S N N R L S T T N e e N L

0000000000000 000O0HOD000C0000000000000000000000HOO0O0O0OO0D0000000000000CQCOO0O

ot o St S Bt et S S et St Named S8 st Gt et S S d St St S S Vvt St S Sl S S St Gl S St S o) et Srmcd St S S Yt St i S Y S el v S S it Gt bt Gt St) Gt et st Nt Yot S Nt St Sonat Vst Sl Vnd st St b Ve e

NNPNVFE BN NNENOUE AN NMEPNOP DA HNMPNVOVPBAOMNMENOCEERAORNNMNMTVNOVFGEROAINNTNOEDRONNM
00000000 HMHMHAMMMHHAANANNNNNNNNNNNNMMNMMNMNOMOP PP PR ITTINNIVNNNVNNNNNYVOVYOOVOOVOOOE ™~
e R R R R R e R R R R R R R e e e e R e K L e R e R R R e R R R R R R R e e R R e e R e e R el e N R e R e R R o R N el e R o R N K N

130

561"012345‘1.9”12345670901234567‘901234561.’01234567.9012345‘7"0123!56
CEECE 0000000000000 RRRRRRR0000000000HMAHWHMMAMMAMNNNNNNNNNNINNANANNNNP PP IS
Attt A At AN A A A At A A A A NNNNNNONINNNNNNNNNNNNNNNNNNNNNNNNNINNNNNNNNNNNNNNNNNN
~)
e o o Mo - 0 ~
o 7 o~ 47 ~ o~]] 3 [&]) 14 7tk u u 3 H oM M
-~ ’ ﬁ ~ Y~ ” - ﬂ - .1 - - L] NPMPCT YN PG Y~
Tt Me 53 umc TS TR AT ame %3 mmg IE L ED m.e OB D B BB
ﬁm 1 mw BT .__ Eiifiriftaanininininining
£ [: SRES g XL RERAZERGERACEZSLS

N TN gy gy gy PN Py gy PN A P gy PN G P S P) 0 R Y e 0 0 P P gy gy PR Y P gy e P e O R PN e) Y e ey ey P ey gy e Y 0 e gy 6T S ey ey 10N ey Y ey PO ey PN gy P gy P ey Y
MMM RS R e M R o MR 0P P
P I T T T T T S S A T . T e N T T T T T e O S G S P S S VL T WK ST SR S
e RN AP RORDDPNNDNDRRNDODONVOOODNODOPRIOOERHNMNNMMNETNNGY
L T S N . T T T T N S I L T T T N e N e N I O N L e L N N T L L T S S N A S R S U S L T N I N
PR AAAANNNNNTNNMC PP PTNINNINOVVVVORRROHNFHHHMNNNNMNMIMMP ST PINONNYVVOOR R ANNANEeYTINOO
P T T T T e T . T T T T T N N N O N N . T T T O O O T T T T .
HHOQAMMOOMMAAMMAQAMMAAMMAAMNAANHMAAMMAAMMAAMMNAAMMAQAMMNAAMNMMNSAMEMEMEMEMMMEeMNNMN

T S S T S N O T T T T S N I . T T S I N T T T TR SR S S R L SR N S N]

0000000000000 00000O0O0O000CCOOHOONMMMNMMAMANMNMMAONMNMNANNTMNMANMNMNMAINMTMAMOOO0O000000000C0OO0

D T T T T I L N . T T T N N N O O L T T T e O T O I S e . T I O e

ONMAMNNOANITONNMNMOMNMNIONNMNMIMNTMIMOO00000000000000000000000000HOO0O000O00O0O0DOOO0OON

O T T T T S T T . T T T T e I . T T N e T T T Y S T

0000000000000 0O0O0COO0OHOOO0OOOO0OOO0O0000O0O0N000000000000AN00000CO0O0DO00O0O000CONOO

P N N T N T e N O I . T T T T S T T S N N T T N N . T I N R I I I e N T

- X-2-N-N-N-N-N-N-N-N-N-N-N-N-R-X-N-N-N_R-N-N-N-¥-N-R-N-N.¥_-N-N-N-N-N-N-N-N-N-N-N-R-N-N-N-N-N-R-N_N-N-N-N-N-N-N-¥-F-N-N-F-N-F-R-N-N-N-R, N-N-§-N-

T I T T T T T T T T . T S S T . e O O T T)

X-X-F-¥-N-N- N N-¥-N-N-N-N-N-N_N-X-N-N-N-N-N-N-N-N-N-N-N.-W-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N N-N-N-W-N-N-R-N-N-N_ NN NN N-N-N-N-N N-R-N-N-N-N-]

D A N T S N N N T T T S O L T N N T T VA S U S SR S ST S S T S S ST SN R ST S S

00000000000 HOOO0N0O0000C0000000000O000000O00O0O0MOOO0O00D00O0O0O000O0O000O0O0O00ONOOOOOOOO

L N T S S N T S N T S T T . T T S . T N S S L T T L T S TS S)

-X-X-F-¥-¥-E-F K-N-F-N-N-N-N-X-N_R_N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-E-N-N-N-N-N-N N-N-N-N-J- NN NN

L N o T T T T N N O T T T O N N S T T N e . T T N S K S T S N S N)

-X-2- I N-N-N-X-N-N.-N_ N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-R-N-N-N-N-N-N-N-N N-N-¥-N-N-N- - NN~

F R N g g g O ket L e ey L S
.

PNV VOO NMETNOVEPROAOHNMNMPNVPOAOHNNMETNOVEPORAOHNMPNVEEBAONNMEPNVPEPORAONNMENOVrORONNMEN
~ere 000NN 0O BRONRNRRRRAANRARRNROO0O00CCCO0O0OH M NNNNNNNNNNMNMIMOIMNOANNMONMYYeT Y
M Attt AN A AN A A A A A A A A A ANN

131

m.u m...-. m_.u m_..... m_u m.a m.u m_.u m_
PiRiRiRiniRizinis

B DO A 04 o 04 0 04 08 00 A4 M0 a8 M g 0
[T N N
PO NNNNETN OO
® % 2 % & % & T a A v a4 e o
BB ArRNNMNeEeTHNNOO-T®
[T R IR
HMEMEMEM MMM

L L L T N O O N T N I

ONOOOOOOOCOOOOOOCO

L . T T T R N T N S S IR Y

[-X-N-R-N-N-E-R-N-N-N-3-N-N-N-N, N-J

L I T S N S O L T B Y

[-N-N-N-N-R-N-N-N-N-¥-N-N_N ¥-N-N-

L T T O T N N R Y

000000 OO0OOONOODOOO

L O L T RN S S . . B T Y

00000000 ONOODOOOOO

O O N T T S S T S SR N

[-X-X-N-N-N-N-R. N-R-X-N-¥-N-N-§-X-J

L S . T T S S O N T ST

[-N-N-N-N-R N-R-~N-N-N-R-¥-R-N-N-N-J

L T N . T T T N U O ST Y

OCO0OONOOOOOODOOOO0OOO

L e e e e el

246
247
248
2649
250
251
252
253
254
255
256
257
258
259
260
261
262

SUMMARY OF REACHABILITY AMALYSIS (AMALYSIS COMPLETED)

: 0

¥umber of states generated :263

Nusber of states analyszed :263

Number of deadlocks

ARARRYONE* * R ow

UNEXRCUTED TRANSITIONS

132

10.

11.

LIST OF REFERENCES

Lundy, G. M., and Miller, R. E., “Specification and Analysis of a Data Transfer Proto-
col Using Systems of Communicating Machines,” Distributed Computing, Springer -
Verlag, December 1991.

Lundy, G. M., and Miller, R. E., “Specification and Analysis of a General Data Trans-
fer Protocol,” Tech Rep GIT-88/12, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA 1988.

Lundy, G. M., and Akyildiz I. ., “A Formal Model of the FDDI Network Protocol,”
Europa Proceedings of the EFOC/LAN’91, pp. 201-205, London, 1991.

Lundy, G. M., “Specification and Analysis of the Token Bus Protocol Using Systems
of Communicating Machines,” IEEE Systems Design and Networks Conference, San-
ta Clara, CA, 1990.

Lundy, G. M., and Lugqi, “Specification of Token Ring Protocol Using Systems of
Communicating Machines, “IEEE Systems Design and Networks Conference, Santa
Clara, CA, 1989.

. | Lundy, G. M,, and Miller, R. E., “Analyzing a CSMA/CD Protocol Through a Systems

of Communicating Machines Specification (submitted for publication).

Raiche, C., “Specification and Analysis of The Token Ring Protocol,” M. S. Thesis,
Department of Computer Science, Naval Postgraduate School, Monterey, CA, 1989.

Rothlisberger, M. J., “Automated Tools for Validating Network Protocols,” M. S. The-
sis, Department of Computer Science, Naval Postgraduate School, Monterey, CA,
September 1992.

Peng, Wuxu and Puroshothaman, S., “Data Flow Analysis of Communicating Finite
State Machines,” ACM Transactions on Programming Languages and Systems,
Vol.13, No. 3, July 1991.

Rudin, H., “An Informal Overview of Formal Protocol Specification,” IFIP TC 6th In-
ternational Conference on Information Network and Data Communication, Ronneby
Brunn, Sweden, 11-14 May 1986.

Vuong, S. T., and Cowan, D. D., “Reachability Analysis of Protocols with FIFO Chan-
nels,” ACM SIGCOMM, University of Texas at Austin, March 8-9 1983.

133

12.

13.

14.

15.

16.

17.

Gouda, M. G., “An Example for Constructing Communicating Machines by Stepwise
Refinement,” Proc. 3rd IFIP WG 6.1 Int. Workshop on Protocol Specification, Testing,
and Verification, North-Holland Publ., 1983.

United States, Department of Defense, “Reference Manual for the Ada Programming
Language,” ANSI/MIL-STD-1815A-1983.

Lundy G. M., “Modeling and Analysis of Data Link Protocols,” TN86-499.1, Tele-
communications Research Laboratory, GTE Laboratories, 40 Sylvan Road, Waltham,
MA, January 1986.

Charbonneau, L. J., “Specification and Analysis of The Token Bus Protocol,” M. S.
Thesis, Department of Computer Science, Naval Postgraduate School, Monterey, CA,
1990.

Holzmann, Gerard J., “Design and Validation of Computer Protocols,” Prentice Hall
Publishing Co., 1991.

Aggarwal S., Barbara D., and Meth K. Z., “SPANNER: A Tool for the Specification,
Analysis, and Evolution of Protocols,” IEEE Transactions on Software Engineering,
Vol. SE-13, No. 12, December 1987.

134

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library, Code 052
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 37 CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. G. M. Lundy, Code CS/Ln

Assistant Professor, Computer Science Department
Naval Postgraduate School

Monterey, CA 93943-5000

Dr. Man-Tak Shing, Code CS/Sh

Associate Professor, Computer Science Department
Naval Postgraduate School

Monterey, CA 93943-5000

Dr. Mohamed Gouda
Department of Computer Science
University of Texas at Austin
Austin, TX 78712

Dr. Raymond E. Miller
Department of Computer Science
A. V. Williams Bldg.

University of Maryland

College Park, MD 20742

Dr. Krishan Sabnani
AT&T Bell Labs
Room 2C-218

Murray Hill, NJ 07974

135

10.

11.

12.

13.

Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar, Ankara / TURKEY

Golcuk Tersanesi Komutanligi
Golcuk, Kocaeli / TURKEY

Deniz Harp Okulu Komutanligi
81704 Tuzla, Istanbul / TURKEY

Taskizak Tersanesi Komutanligi
Kasimpasa, Istanbul / TURKEY

LTIG Zeki Bulent Bulbul
Merkez Bankasi Evieri
Ozgurler Sok. No. 9
Kalaba, Ankara / TURKEY

136

